Metamath Proof Explorer


Theorem fmptd2f

Description: Domain and codomain of the mapping operation; deduction form. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses fmptd2f.1 xφ
fmptd2f.2 φxABC
Assertion fmptd2f φxAB:AC

Proof

Step Hyp Ref Expression
1 fmptd2f.1 xφ
2 fmptd2f.2 φxABC
3 eqid xAB=xAB
4 1 2 3 fmptdf φxAB:AC