Metamath Proof Explorer


Theorem fge0iccre

Description: A range of nonnegative extended reals without plus infinity. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses fge0iccre.1 ( 𝜑𝐹 : 𝑋 ⟶ ( 0 [,] +∞ ) )
fge0iccre.2 ( 𝜑 → ¬ +∞ ∈ ran 𝐹 )
Assertion fge0iccre ( 𝜑𝐹 : 𝑋 ⟶ ℝ )

Proof

Step Hyp Ref Expression
1 fge0iccre.1 ( 𝜑𝐹 : 𝑋 ⟶ ( 0 [,] +∞ ) )
2 fge0iccre.2 ( 𝜑 → ¬ +∞ ∈ ran 𝐹 )
3 1 2 fge0iccico ( 𝜑𝐹 : 𝑋 ⟶ ( 0 [,) +∞ ) )
4 rge0ssre ( 0 [,) +∞ ) ⊆ ℝ
5 4 a1i ( 𝜑 → ( 0 [,) +∞ ) ⊆ ℝ )
6 3 5 fssd ( 𝜑𝐹 : 𝑋 ⟶ ℝ )