| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sge0tsms.g | ⊢ 𝐺  =  ( ℝ*𝑠  ↾s  ( 0 [,] +∞ ) ) | 
						
							| 2 |  | sge0tsms.x | ⊢ ( 𝜑  →  𝑋  ∈  𝑉 ) | 
						
							| 3 |  | sge0tsms.f | ⊢ ( 𝜑  →  𝐹 : 𝑋 ⟶ ( 0 [,] +∞ ) ) | 
						
							| 4 |  | eqid | ⊢ sup ( ran  ( 𝑥  ∈  ( 𝒫  𝑋  ∩  Fin )  ↦  ( 𝐺  Σg  ( 𝐹  ↾  𝑥 ) ) ) ,  ℝ* ,   <  )  =  sup ( ran  ( 𝑥  ∈  ( 𝒫  𝑋  ∩  Fin )  ↦  ( 𝐺  Σg  ( 𝐹  ↾  𝑥 ) ) ) ,  ℝ* ,   <  ) | 
						
							| 5 | 4 | a1i | ⊢ ( 𝜑  →  sup ( ran  ( 𝑥  ∈  ( 𝒫  𝑋  ∩  Fin )  ↦  ( 𝐺  Σg  ( 𝐹  ↾  𝑥 ) ) ) ,  ℝ* ,   <  )  =  sup ( ran  ( 𝑥  ∈  ( 𝒫  𝑋  ∩  Fin )  ↦  ( 𝐺  Σg  ( 𝐹  ↾  𝑥 ) ) ) ,  ℝ* ,   <  ) ) | 
						
							| 6 |  | xrltso | ⊢  <   Or  ℝ* | 
						
							| 7 | 6 | supex | ⊢ sup ( ran  ( 𝑥  ∈  ( 𝒫  𝑋  ∩  Fin )  ↦  ( 𝐺  Σg  ( 𝐹  ↾  𝑥 ) ) ) ,  ℝ* ,   <  )  ∈  V | 
						
							| 8 | 7 | a1i | ⊢ ( 𝜑  →  sup ( ran  ( 𝑥  ∈  ( 𝒫  𝑋  ∩  Fin )  ↦  ( 𝐺  Σg  ( 𝐹  ↾  𝑥 ) ) ) ,  ℝ* ,   <  )  ∈  V ) | 
						
							| 9 |  | elsng | ⊢ ( sup ( ran  ( 𝑥  ∈  ( 𝒫  𝑋  ∩  Fin )  ↦  ( 𝐺  Σg  ( 𝐹  ↾  𝑥 ) ) ) ,  ℝ* ,   <  )  ∈  V  →  ( sup ( ran  ( 𝑥  ∈  ( 𝒫  𝑋  ∩  Fin )  ↦  ( 𝐺  Σg  ( 𝐹  ↾  𝑥 ) ) ) ,  ℝ* ,   <  )  ∈  { sup ( ran  ( 𝑥  ∈  ( 𝒫  𝑋  ∩  Fin )  ↦  ( 𝐺  Σg  ( 𝐹  ↾  𝑥 ) ) ) ,  ℝ* ,   <  ) }  ↔  sup ( ran  ( 𝑥  ∈  ( 𝒫  𝑋  ∩  Fin )  ↦  ( 𝐺  Σg  ( 𝐹  ↾  𝑥 ) ) ) ,  ℝ* ,   <  )  =  sup ( ran  ( 𝑥  ∈  ( 𝒫  𝑋  ∩  Fin )  ↦  ( 𝐺  Σg  ( 𝐹  ↾  𝑥 ) ) ) ,  ℝ* ,   <  ) ) ) | 
						
							| 10 | 8 9 | syl | ⊢ ( 𝜑  →  ( sup ( ran  ( 𝑥  ∈  ( 𝒫  𝑋  ∩  Fin )  ↦  ( 𝐺  Σg  ( 𝐹  ↾  𝑥 ) ) ) ,  ℝ* ,   <  )  ∈  { sup ( ran  ( 𝑥  ∈  ( 𝒫  𝑋  ∩  Fin )  ↦  ( 𝐺  Σg  ( 𝐹  ↾  𝑥 ) ) ) ,  ℝ* ,   <  ) }  ↔  sup ( ran  ( 𝑥  ∈  ( 𝒫  𝑋  ∩  Fin )  ↦  ( 𝐺  Σg  ( 𝐹  ↾  𝑥 ) ) ) ,  ℝ* ,   <  )  =  sup ( ran  ( 𝑥  ∈  ( 𝒫  𝑋  ∩  Fin )  ↦  ( 𝐺  Σg  ( 𝐹  ↾  𝑥 ) ) ) ,  ℝ* ,   <  ) ) ) | 
						
							| 11 | 5 10 | mpbird | ⊢ ( 𝜑  →  sup ( ran  ( 𝑥  ∈  ( 𝒫  𝑋  ∩  Fin )  ↦  ( 𝐺  Σg  ( 𝐹  ↾  𝑥 ) ) ) ,  ℝ* ,   <  )  ∈  { sup ( ran  ( 𝑥  ∈  ( 𝒫  𝑋  ∩  Fin )  ↦  ( 𝐺  Σg  ( 𝐹  ↾  𝑥 ) ) ) ,  ℝ* ,   <  ) } ) | 
						
							| 12 | 2 | adantr | ⊢ ( ( 𝜑  ∧  +∞  ∈  ran  𝐹 )  →  𝑋  ∈  𝑉 ) | 
						
							| 13 | 3 | adantr | ⊢ ( ( 𝜑  ∧  +∞  ∈  ran  𝐹 )  →  𝐹 : 𝑋 ⟶ ( 0 [,] +∞ ) ) | 
						
							| 14 |  | simpr | ⊢ ( ( 𝜑  ∧  +∞  ∈  ran  𝐹 )  →  +∞  ∈  ran  𝐹 ) | 
						
							| 15 | 12 13 14 | sge0pnfval | ⊢ ( ( 𝜑  ∧  +∞  ∈  ran  𝐹 )  →  ( Σ^ ‘ 𝐹 )  =  +∞ ) | 
						
							| 16 | 3 | ffnd | ⊢ ( 𝜑  →  𝐹  Fn  𝑋 ) | 
						
							| 17 | 16 | adantr | ⊢ ( ( 𝜑  ∧  +∞  ∈  ran  𝐹 )  →  𝐹  Fn  𝑋 ) | 
						
							| 18 |  | fvelrnb | ⊢ ( 𝐹  Fn  𝑋  →  ( +∞  ∈  ran  𝐹  ↔  ∃ 𝑦  ∈  𝑋 ( 𝐹 ‘ 𝑦 )  =  +∞ ) ) | 
						
							| 19 | 17 18 | syl | ⊢ ( ( 𝜑  ∧  +∞  ∈  ran  𝐹 )  →  ( +∞  ∈  ran  𝐹  ↔  ∃ 𝑦  ∈  𝑋 ( 𝐹 ‘ 𝑦 )  =  +∞ ) ) | 
						
							| 20 | 14 19 | mpbid | ⊢ ( ( 𝜑  ∧  +∞  ∈  ran  𝐹 )  →  ∃ 𝑦  ∈  𝑋 ( 𝐹 ‘ 𝑦 )  =  +∞ ) | 
						
							| 21 |  | iccssxr | ⊢ ( 0 [,] +∞ )  ⊆  ℝ* | 
						
							| 22 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝒫  𝑋  ∩  Fin ) )  →  𝑥  ∈  ( 𝒫  𝑋  ∩  Fin ) ) | 
						
							| 23 | 3 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝒫  𝑋  ∩  Fin ) )  →  𝐹 : 𝑋 ⟶ ( 0 [,] +∞ ) ) | 
						
							| 24 |  | elinel1 | ⊢ ( 𝑥  ∈  ( 𝒫  𝑋  ∩  Fin )  →  𝑥  ∈  𝒫  𝑋 ) | 
						
							| 25 |  | elpwi | ⊢ ( 𝑥  ∈  𝒫  𝑋  →  𝑥  ⊆  𝑋 ) | 
						
							| 26 | 24 25 | syl | ⊢ ( 𝑥  ∈  ( 𝒫  𝑋  ∩  Fin )  →  𝑥  ⊆  𝑋 ) | 
						
							| 27 | 26 | adantl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝒫  𝑋  ∩  Fin ) )  →  𝑥  ⊆  𝑋 ) | 
						
							| 28 |  | fssres | ⊢ ( ( 𝐹 : 𝑋 ⟶ ( 0 [,] +∞ )  ∧  𝑥  ⊆  𝑋 )  →  ( 𝐹  ↾  𝑥 ) : 𝑥 ⟶ ( 0 [,] +∞ ) ) | 
						
							| 29 | 23 27 28 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝒫  𝑋  ∩  Fin ) )  →  ( 𝐹  ↾  𝑥 ) : 𝑥 ⟶ ( 0 [,] +∞ ) ) | 
						
							| 30 |  | elinel2 | ⊢ ( 𝑥  ∈  ( 𝒫  𝑋  ∩  Fin )  →  𝑥  ∈  Fin ) | 
						
							| 31 | 30 | adantl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝒫  𝑋  ∩  Fin ) )  →  𝑥  ∈  Fin ) | 
						
							| 32 |  | 0red | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝒫  𝑋  ∩  Fin ) )  →  0  ∈  ℝ ) | 
						
							| 33 | 29 31 32 | fdmfifsupp | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝒫  𝑋  ∩  Fin ) )  →  ( 𝐹  ↾  𝑥 )  finSupp  0 ) | 
						
							| 34 | 1 22 29 33 | gsumge0cl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝒫  𝑋  ∩  Fin ) )  →  ( 𝐺  Σg  ( 𝐹  ↾  𝑥 ) )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 35 | 21 34 | sselid | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝒫  𝑋  ∩  Fin ) )  →  ( 𝐺  Σg  ( 𝐹  ↾  𝑥 ) )  ∈  ℝ* ) | 
						
							| 36 | 35 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  ( 𝒫  𝑋  ∩  Fin ) ( 𝐺  Σg  ( 𝐹  ↾  𝑥 ) )  ∈  ℝ* ) | 
						
							| 37 | 36 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑋  ∧  ( 𝐹 ‘ 𝑦 )  =  +∞ )  →  ∀ 𝑥  ∈  ( 𝒫  𝑋  ∩  Fin ) ( 𝐺  Σg  ( 𝐹  ↾  𝑥 ) )  ∈  ℝ* ) | 
						
							| 38 |  | eqid | ⊢ ( 𝑥  ∈  ( 𝒫  𝑋  ∩  Fin )  ↦  ( 𝐺  Σg  ( 𝐹  ↾  𝑥 ) ) )  =  ( 𝑥  ∈  ( 𝒫  𝑋  ∩  Fin )  ↦  ( 𝐺  Σg  ( 𝐹  ↾  𝑥 ) ) ) | 
						
							| 39 | 38 | rnmptss | ⊢ ( ∀ 𝑥  ∈  ( 𝒫  𝑋  ∩  Fin ) ( 𝐺  Σg  ( 𝐹  ↾  𝑥 ) )  ∈  ℝ*  →  ran  ( 𝑥  ∈  ( 𝒫  𝑋  ∩  Fin )  ↦  ( 𝐺  Σg  ( 𝐹  ↾  𝑥 ) ) )  ⊆  ℝ* ) | 
						
							| 40 | 37 39 | syl | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑋  ∧  ( 𝐹 ‘ 𝑦 )  =  +∞ )  →  ran  ( 𝑥  ∈  ( 𝒫  𝑋  ∩  Fin )  ↦  ( 𝐺  Σg  ( 𝐹  ↾  𝑥 ) ) )  ⊆  ℝ* ) | 
						
							| 41 |  | snelpwi | ⊢ ( 𝑦  ∈  𝑋  →  { 𝑦 }  ∈  𝒫  𝑋 ) | 
						
							| 42 |  | snfi | ⊢ { 𝑦 }  ∈  Fin | 
						
							| 43 | 42 | a1i | ⊢ ( 𝑦  ∈  𝑋  →  { 𝑦 }  ∈  Fin ) | 
						
							| 44 | 41 43 | elind | ⊢ ( 𝑦  ∈  𝑋  →  { 𝑦 }  ∈  ( 𝒫  𝑋  ∩  Fin ) ) | 
						
							| 45 | 44 | 3ad2ant2 | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑋  ∧  ( 𝐹 ‘ 𝑦 )  =  +∞ )  →  { 𝑦 }  ∈  ( 𝒫  𝑋  ∩  Fin ) ) | 
						
							| 46 | 3 | adantr | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑋 )  →  𝐹 : 𝑋 ⟶ ( 0 [,] +∞ ) ) | 
						
							| 47 |  | snssi | ⊢ ( 𝑦  ∈  𝑋  →  { 𝑦 }  ⊆  𝑋 ) | 
						
							| 48 | 47 | adantl | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑋 )  →  { 𝑦 }  ⊆  𝑋 ) | 
						
							| 49 | 46 48 | fssresd | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑋 )  →  ( 𝐹  ↾  { 𝑦 } ) : { 𝑦 } ⟶ ( 0 [,] +∞ ) ) | 
						
							| 50 | 49 | feqmptd | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑋 )  →  ( 𝐹  ↾  { 𝑦 } )  =  ( 𝑥  ∈  { 𝑦 }  ↦  ( ( 𝐹  ↾  { 𝑦 } ) ‘ 𝑥 ) ) ) | 
						
							| 51 |  | fvres | ⊢ ( 𝑥  ∈  { 𝑦 }  →  ( ( 𝐹  ↾  { 𝑦 } ) ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 52 | 51 | mpteq2ia | ⊢ ( 𝑥  ∈  { 𝑦 }  ↦  ( ( 𝐹  ↾  { 𝑦 } ) ‘ 𝑥 ) )  =  ( 𝑥  ∈  { 𝑦 }  ↦  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 53 | 52 | a1i | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑋 )  →  ( 𝑥  ∈  { 𝑦 }  ↦  ( ( 𝐹  ↾  { 𝑦 } ) ‘ 𝑥 ) )  =  ( 𝑥  ∈  { 𝑦 }  ↦  ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 54 | 50 53 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑋 )  →  ( 𝐹  ↾  { 𝑦 } )  =  ( 𝑥  ∈  { 𝑦 }  ↦  ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 55 | 54 | oveq2d | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑋 )  →  ( 𝐺  Σg  ( 𝐹  ↾  { 𝑦 } ) )  =  ( 𝐺  Σg  ( 𝑥  ∈  { 𝑦 }  ↦  ( 𝐹 ‘ 𝑥 ) ) ) ) | 
						
							| 56 | 55 | 3adant3 | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑋  ∧  ( 𝐹 ‘ 𝑦 )  =  +∞ )  →  ( 𝐺  Σg  ( 𝐹  ↾  { 𝑦 } ) )  =  ( 𝐺  Σg  ( 𝑥  ∈  { 𝑦 }  ↦  ( 𝐹 ‘ 𝑥 ) ) ) ) | 
						
							| 57 |  | xrge0cmn | ⊢ ( ℝ*𝑠  ↾s  ( 0 [,] +∞ ) )  ∈  CMnd | 
						
							| 58 | 1 57 | eqeltri | ⊢ 𝐺  ∈  CMnd | 
						
							| 59 |  | cmnmnd | ⊢ ( 𝐺  ∈  CMnd  →  𝐺  ∈  Mnd ) | 
						
							| 60 | 58 59 | ax-mp | ⊢ 𝐺  ∈  Mnd | 
						
							| 61 | 60 | a1i | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑋  ∧  ( 𝐹 ‘ 𝑦 )  =  +∞ )  →  𝐺  ∈  Mnd ) | 
						
							| 62 |  | simp2 | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑋  ∧  ( 𝐹 ‘ 𝑦 )  =  +∞ )  →  𝑦  ∈  𝑋 ) | 
						
							| 63 | 3 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑋 )  →  ( 𝐹 ‘ 𝑦 )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 64 | 63 | 3adant3 | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑋  ∧  ( 𝐹 ‘ 𝑦 )  =  +∞ )  →  ( 𝐹 ‘ 𝑦 )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 65 |  | dfss2 | ⊢ ( ( 0 [,] +∞ )  ⊆  ℝ*  ↔  ( ( 0 [,] +∞ )  ∩  ℝ* )  =  ( 0 [,] +∞ ) ) | 
						
							| 66 | 21 65 | mpbi | ⊢ ( ( 0 [,] +∞ )  ∩  ℝ* )  =  ( 0 [,] +∞ ) | 
						
							| 67 | 66 | eqcomi | ⊢ ( 0 [,] +∞ )  =  ( ( 0 [,] +∞ )  ∩  ℝ* ) | 
						
							| 68 |  | ovex | ⊢ ( 0 [,] +∞ )  ∈  V | 
						
							| 69 |  | xrsbas | ⊢ ℝ*  =  ( Base ‘ ℝ*𝑠 ) | 
						
							| 70 | 1 69 | ressbas | ⊢ ( ( 0 [,] +∞ )  ∈  V  →  ( ( 0 [,] +∞ )  ∩  ℝ* )  =  ( Base ‘ 𝐺 ) ) | 
						
							| 71 | 68 70 | ax-mp | ⊢ ( ( 0 [,] +∞ )  ∩  ℝ* )  =  ( Base ‘ 𝐺 ) | 
						
							| 72 | 67 71 | eqtri | ⊢ ( 0 [,] +∞ )  =  ( Base ‘ 𝐺 ) | 
						
							| 73 |  | fveq2 | ⊢ ( 𝑥  =  𝑦  →  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 74 | 72 73 | gsumsn | ⊢ ( ( 𝐺  ∈  Mnd  ∧  𝑦  ∈  𝑋  ∧  ( 𝐹 ‘ 𝑦 )  ∈  ( 0 [,] +∞ ) )  →  ( 𝐺  Σg  ( 𝑥  ∈  { 𝑦 }  ↦  ( 𝐹 ‘ 𝑥 ) ) )  =  ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 75 | 61 62 64 74 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑋  ∧  ( 𝐹 ‘ 𝑦 )  =  +∞ )  →  ( 𝐺  Σg  ( 𝑥  ∈  { 𝑦 }  ↦  ( 𝐹 ‘ 𝑥 ) ) )  =  ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 76 |  | simp3 | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑋  ∧  ( 𝐹 ‘ 𝑦 )  =  +∞ )  →  ( 𝐹 ‘ 𝑦 )  =  +∞ ) | 
						
							| 77 | 56 75 76 | 3eqtrrd | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑋  ∧  ( 𝐹 ‘ 𝑦 )  =  +∞ )  →  +∞  =  ( 𝐺  Σg  ( 𝐹  ↾  { 𝑦 } ) ) ) | 
						
							| 78 |  | reseq2 | ⊢ ( 𝑥  =  { 𝑦 }  →  ( 𝐹  ↾  𝑥 )  =  ( 𝐹  ↾  { 𝑦 } ) ) | 
						
							| 79 | 78 | oveq2d | ⊢ ( 𝑥  =  { 𝑦 }  →  ( 𝐺  Σg  ( 𝐹  ↾  𝑥 ) )  =  ( 𝐺  Σg  ( 𝐹  ↾  { 𝑦 } ) ) ) | 
						
							| 80 | 79 | rspceeqv | ⊢ ( ( { 𝑦 }  ∈  ( 𝒫  𝑋  ∩  Fin )  ∧  +∞  =  ( 𝐺  Σg  ( 𝐹  ↾  { 𝑦 } ) ) )  →  ∃ 𝑥  ∈  ( 𝒫  𝑋  ∩  Fin ) +∞  =  ( 𝐺  Σg  ( 𝐹  ↾  𝑥 ) ) ) | 
						
							| 81 | 45 77 80 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑋  ∧  ( 𝐹 ‘ 𝑦 )  =  +∞ )  →  ∃ 𝑥  ∈  ( 𝒫  𝑋  ∩  Fin ) +∞  =  ( 𝐺  Σg  ( 𝐹  ↾  𝑥 ) ) ) | 
						
							| 82 |  | pnfxr | ⊢ +∞  ∈  ℝ* | 
						
							| 83 | 82 | a1i | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑋  ∧  ( 𝐹 ‘ 𝑦 )  =  +∞ )  →  +∞  ∈  ℝ* ) | 
						
							| 84 | 38 | elrnmpt | ⊢ ( +∞  ∈  ℝ*  →  ( +∞  ∈  ran  ( 𝑥  ∈  ( 𝒫  𝑋  ∩  Fin )  ↦  ( 𝐺  Σg  ( 𝐹  ↾  𝑥 ) ) )  ↔  ∃ 𝑥  ∈  ( 𝒫  𝑋  ∩  Fin ) +∞  =  ( 𝐺  Σg  ( 𝐹  ↾  𝑥 ) ) ) ) | 
						
							| 85 | 83 84 | syl | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑋  ∧  ( 𝐹 ‘ 𝑦 )  =  +∞ )  →  ( +∞  ∈  ran  ( 𝑥  ∈  ( 𝒫  𝑋  ∩  Fin )  ↦  ( 𝐺  Σg  ( 𝐹  ↾  𝑥 ) ) )  ↔  ∃ 𝑥  ∈  ( 𝒫  𝑋  ∩  Fin ) +∞  =  ( 𝐺  Σg  ( 𝐹  ↾  𝑥 ) ) ) ) | 
						
							| 86 | 81 85 | mpbird | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑋  ∧  ( 𝐹 ‘ 𝑦 )  =  +∞ )  →  +∞  ∈  ran  ( 𝑥  ∈  ( 𝒫  𝑋  ∩  Fin )  ↦  ( 𝐺  Σg  ( 𝐹  ↾  𝑥 ) ) ) ) | 
						
							| 87 |  | supxrpnf | ⊢ ( ( ran  ( 𝑥  ∈  ( 𝒫  𝑋  ∩  Fin )  ↦  ( 𝐺  Σg  ( 𝐹  ↾  𝑥 ) ) )  ⊆  ℝ*  ∧  +∞  ∈  ran  ( 𝑥  ∈  ( 𝒫  𝑋  ∩  Fin )  ↦  ( 𝐺  Σg  ( 𝐹  ↾  𝑥 ) ) ) )  →  sup ( ran  ( 𝑥  ∈  ( 𝒫  𝑋  ∩  Fin )  ↦  ( 𝐺  Σg  ( 𝐹  ↾  𝑥 ) ) ) ,  ℝ* ,   <  )  =  +∞ ) | 
						
							| 88 | 40 86 87 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑋  ∧  ( 𝐹 ‘ 𝑦 )  =  +∞ )  →  sup ( ran  ( 𝑥  ∈  ( 𝒫  𝑋  ∩  Fin )  ↦  ( 𝐺  Σg  ( 𝐹  ↾  𝑥 ) ) ) ,  ℝ* ,   <  )  =  +∞ ) | 
						
							| 89 | 88 | 3exp | ⊢ ( 𝜑  →  ( 𝑦  ∈  𝑋  →  ( ( 𝐹 ‘ 𝑦 )  =  +∞  →  sup ( ran  ( 𝑥  ∈  ( 𝒫  𝑋  ∩  Fin )  ↦  ( 𝐺  Σg  ( 𝐹  ↾  𝑥 ) ) ) ,  ℝ* ,   <  )  =  +∞ ) ) ) | 
						
							| 90 | 89 | adantr | ⊢ ( ( 𝜑  ∧  +∞  ∈  ran  𝐹 )  →  ( 𝑦  ∈  𝑋  →  ( ( 𝐹 ‘ 𝑦 )  =  +∞  →  sup ( ran  ( 𝑥  ∈  ( 𝒫  𝑋  ∩  Fin )  ↦  ( 𝐺  Σg  ( 𝐹  ↾  𝑥 ) ) ) ,  ℝ* ,   <  )  =  +∞ ) ) ) | 
						
							| 91 | 90 | rexlimdv | ⊢ ( ( 𝜑  ∧  +∞  ∈  ran  𝐹 )  →  ( ∃ 𝑦  ∈  𝑋 ( 𝐹 ‘ 𝑦 )  =  +∞  →  sup ( ran  ( 𝑥  ∈  ( 𝒫  𝑋  ∩  Fin )  ↦  ( 𝐺  Σg  ( 𝐹  ↾  𝑥 ) ) ) ,  ℝ* ,   <  )  =  +∞ ) ) | 
						
							| 92 | 20 91 | mpd | ⊢ ( ( 𝜑  ∧  +∞  ∈  ran  𝐹 )  →  sup ( ran  ( 𝑥  ∈  ( 𝒫  𝑋  ∩  Fin )  ↦  ( 𝐺  Σg  ( 𝐹  ↾  𝑥 ) ) ) ,  ℝ* ,   <  )  =  +∞ ) | 
						
							| 93 | 15 92 | eqtr4d | ⊢ ( ( 𝜑  ∧  +∞  ∈  ran  𝐹 )  →  ( Σ^ ‘ 𝐹 )  =  sup ( ran  ( 𝑥  ∈  ( 𝒫  𝑋  ∩  Fin )  ↦  ( 𝐺  Σg  ( 𝐹  ↾  𝑥 ) ) ) ,  ℝ* ,   <  ) ) | 
						
							| 94 | 2 | adantr | ⊢ ( ( 𝜑  ∧  ¬  +∞  ∈  ran  𝐹 )  →  𝑋  ∈  𝑉 ) | 
						
							| 95 | 3 | adantr | ⊢ ( ( 𝜑  ∧  ¬  +∞  ∈  ran  𝐹 )  →  𝐹 : 𝑋 ⟶ ( 0 [,] +∞ ) ) | 
						
							| 96 |  | simpr | ⊢ ( ( 𝜑  ∧  ¬  +∞  ∈  ran  𝐹 )  →  ¬  +∞  ∈  ran  𝐹 ) | 
						
							| 97 | 95 96 | fge0iccico | ⊢ ( ( 𝜑  ∧  ¬  +∞  ∈  ran  𝐹 )  →  𝐹 : 𝑋 ⟶ ( 0 [,) +∞ ) ) | 
						
							| 98 | 94 97 | sge0reval | ⊢ ( ( 𝜑  ∧  ¬  +∞  ∈  ran  𝐹 )  →  ( Σ^ ‘ 𝐹 )  =  sup ( ran  ( 𝑥  ∈  ( 𝒫  𝑋  ∩  Fin )  ↦  Σ 𝑦  ∈  𝑥 ( 𝐹 ‘ 𝑦 ) ) ,  ℝ* ,   <  ) ) | 
						
							| 99 | 23 27 | feqresmpt | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝒫  𝑋  ∩  Fin ) )  →  ( 𝐹  ↾  𝑥 )  =  ( 𝑦  ∈  𝑥  ↦  ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 100 | 99 | adantlr | ⊢ ( ( ( 𝜑  ∧  ¬  +∞  ∈  ran  𝐹 )  ∧  𝑥  ∈  ( 𝒫  𝑋  ∩  Fin ) )  →  ( 𝐹  ↾  𝑥 )  =  ( 𝑦  ∈  𝑥  ↦  ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 101 | 100 | oveq2d | ⊢ ( ( ( 𝜑  ∧  ¬  +∞  ∈  ran  𝐹 )  ∧  𝑥  ∈  ( 𝒫  𝑋  ∩  Fin ) )  →  ( 𝐺  Σg  ( 𝐹  ↾  𝑥 ) )  =  ( 𝐺  Σg  ( 𝑦  ∈  𝑥  ↦  ( 𝐹 ‘ 𝑦 ) ) ) ) | 
						
							| 102 | 1 | fveq2i | ⊢ ( +g ‘ 𝐺 )  =  ( +g ‘ ( ℝ*𝑠  ↾s  ( 0 [,] +∞ ) ) ) | 
						
							| 103 |  | eqid | ⊢ ( ℝ*𝑠  ↾s  ( 0 [,] +∞ ) )  =  ( ℝ*𝑠  ↾s  ( 0 [,] +∞ ) ) | 
						
							| 104 |  | xrsadd | ⊢  +𝑒   =  ( +g ‘ ℝ*𝑠 ) | 
						
							| 105 | 103 104 | ressplusg | ⊢ ( ( 0 [,] +∞ )  ∈  V  →   +𝑒   =  ( +g ‘ ( ℝ*𝑠  ↾s  ( 0 [,] +∞ ) ) ) ) | 
						
							| 106 | 68 105 | ax-mp | ⊢  +𝑒   =  ( +g ‘ ( ℝ*𝑠  ↾s  ( 0 [,] +∞ ) ) ) | 
						
							| 107 | 106 | eqcomi | ⊢ ( +g ‘ ( ℝ*𝑠  ↾s  ( 0 [,] +∞ ) ) )  =   +𝑒 | 
						
							| 108 | 102 107 | eqtr2i | ⊢  +𝑒   =  ( +g ‘ 𝐺 ) | 
						
							| 109 | 1 | oveq1i | ⊢ ( 𝐺  ↾s  ( 0 [,) +∞ ) )  =  ( ( ℝ*𝑠  ↾s  ( 0 [,] +∞ ) )  ↾s  ( 0 [,) +∞ ) ) | 
						
							| 110 |  | icossicc | ⊢ ( 0 [,) +∞ )  ⊆  ( 0 [,] +∞ ) | 
						
							| 111 | 68 110 | pm3.2i | ⊢ ( ( 0 [,] +∞ )  ∈  V  ∧  ( 0 [,) +∞ )  ⊆  ( 0 [,] +∞ ) ) | 
						
							| 112 |  | ressabs | ⊢ ( ( ( 0 [,] +∞ )  ∈  V  ∧  ( 0 [,) +∞ )  ⊆  ( 0 [,] +∞ ) )  →  ( ( ℝ*𝑠  ↾s  ( 0 [,] +∞ ) )  ↾s  ( 0 [,) +∞ ) )  =  ( ℝ*𝑠  ↾s  ( 0 [,) +∞ ) ) ) | 
						
							| 113 | 111 112 | ax-mp | ⊢ ( ( ℝ*𝑠  ↾s  ( 0 [,] +∞ ) )  ↾s  ( 0 [,) +∞ ) )  =  ( ℝ*𝑠  ↾s  ( 0 [,) +∞ ) ) | 
						
							| 114 | 109 113 | eqtr2i | ⊢ ( ℝ*𝑠  ↾s  ( 0 [,) +∞ ) )  =  ( 𝐺  ↾s  ( 0 [,) +∞ ) ) | 
						
							| 115 | 58 | elexi | ⊢ 𝐺  ∈  V | 
						
							| 116 | 115 | a1i | ⊢ ( ( ( 𝜑  ∧  ¬  +∞  ∈  ran  𝐹 )  ∧  𝑥  ∈  ( 𝒫  𝑋  ∩  Fin ) )  →  𝐺  ∈  V ) | 
						
							| 117 |  | simpr | ⊢ ( ( ( 𝜑  ∧  ¬  +∞  ∈  ran  𝐹 )  ∧  𝑥  ∈  ( 𝒫  𝑋  ∩  Fin ) )  →  𝑥  ∈  ( 𝒫  𝑋  ∩  Fin ) ) | 
						
							| 118 | 110 | a1i | ⊢ ( ( ( 𝜑  ∧  ¬  +∞  ∈  ran  𝐹 )  ∧  𝑥  ∈  ( 𝒫  𝑋  ∩  Fin ) )  →  ( 0 [,) +∞ )  ⊆  ( 0 [,] +∞ ) ) | 
						
							| 119 |  | 0xr | ⊢ 0  ∈  ℝ* | 
						
							| 120 | 119 | a1i | ⊢ ( ( ( ( 𝜑  ∧  ¬  +∞  ∈  ran  𝐹 )  ∧  𝑥  ∈  ( 𝒫  𝑋  ∩  Fin ) )  ∧  𝑦  ∈  𝑥 )  →  0  ∈  ℝ* ) | 
						
							| 121 | 82 | a1i | ⊢ ( ( ( ( 𝜑  ∧  ¬  +∞  ∈  ran  𝐹 )  ∧  𝑥  ∈  ( 𝒫  𝑋  ∩  Fin ) )  ∧  𝑦  ∈  𝑥 )  →  +∞  ∈  ℝ* ) | 
						
							| 122 | 95 | ad2antrr | ⊢ ( ( ( ( 𝜑  ∧  ¬  +∞  ∈  ran  𝐹 )  ∧  𝑥  ∈  ( 𝒫  𝑋  ∩  Fin ) )  ∧  𝑦  ∈  𝑥 )  →  𝐹 : 𝑋 ⟶ ( 0 [,] +∞ ) ) | 
						
							| 123 | 26 | sselda | ⊢ ( ( 𝑥  ∈  ( 𝒫  𝑋  ∩  Fin )  ∧  𝑦  ∈  𝑥 )  →  𝑦  ∈  𝑋 ) | 
						
							| 124 | 123 | adantll | ⊢ ( ( ( ( 𝜑  ∧  ¬  +∞  ∈  ran  𝐹 )  ∧  𝑥  ∈  ( 𝒫  𝑋  ∩  Fin ) )  ∧  𝑦  ∈  𝑥 )  →  𝑦  ∈  𝑋 ) | 
						
							| 125 | 122 124 | ffvelcdmd | ⊢ ( ( ( ( 𝜑  ∧  ¬  +∞  ∈  ran  𝐹 )  ∧  𝑥  ∈  ( 𝒫  𝑋  ∩  Fin ) )  ∧  𝑦  ∈  𝑥 )  →  ( 𝐹 ‘ 𝑦 )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 126 | 21 125 | sselid | ⊢ ( ( ( ( 𝜑  ∧  ¬  +∞  ∈  ran  𝐹 )  ∧  𝑥  ∈  ( 𝒫  𝑋  ∩  Fin ) )  ∧  𝑦  ∈  𝑥 )  →  ( 𝐹 ‘ 𝑦 )  ∈  ℝ* ) | 
						
							| 127 |  | iccgelb | ⊢ ( ( 0  ∈  ℝ*  ∧  +∞  ∈  ℝ*  ∧  ( 𝐹 ‘ 𝑦 )  ∈  ( 0 [,] +∞ ) )  →  0  ≤  ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 128 | 120 121 125 127 | syl3anc | ⊢ ( ( ( ( 𝜑  ∧  ¬  +∞  ∈  ran  𝐹 )  ∧  𝑥  ∈  ( 𝒫  𝑋  ∩  Fin ) )  ∧  𝑦  ∈  𝑥 )  →  0  ≤  ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 129 |  | id | ⊢ ( ( 𝐹 ‘ 𝑦 )  =  +∞  →  ( 𝐹 ‘ 𝑦 )  =  +∞ ) | 
						
							| 130 | 129 | eqcomd | ⊢ ( ( 𝐹 ‘ 𝑦 )  =  +∞  →  +∞  =  ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 131 | 130 | adantl | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝒫  𝑋  ∩  Fin ) )  ∧  𝑦  ∈  𝑥 )  ∧  ( 𝐹 ‘ 𝑦 )  =  +∞ )  →  +∞  =  ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 132 | 3 | ffund | ⊢ ( 𝜑  →  Fun  𝐹 ) | 
						
							| 133 | 132 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝒫  𝑋  ∩  Fin ) )  ∧  𝑦  ∈  𝑥 )  →  Fun  𝐹 ) | 
						
							| 134 | 22 123 | sylan | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝒫  𝑋  ∩  Fin ) )  ∧  𝑦  ∈  𝑥 )  →  𝑦  ∈  𝑋 ) | 
						
							| 135 | 3 | fdmd | ⊢ ( 𝜑  →  dom  𝐹  =  𝑋 ) | 
						
							| 136 | 135 | eqcomd | ⊢ ( 𝜑  →  𝑋  =  dom  𝐹 ) | 
						
							| 137 | 136 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝒫  𝑋  ∩  Fin ) )  ∧  𝑦  ∈  𝑥 )  →  𝑋  =  dom  𝐹 ) | 
						
							| 138 | 134 137 | eleqtrd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝒫  𝑋  ∩  Fin ) )  ∧  𝑦  ∈  𝑥 )  →  𝑦  ∈  dom  𝐹 ) | 
						
							| 139 |  | fvelrn | ⊢ ( ( Fun  𝐹  ∧  𝑦  ∈  dom  𝐹 )  →  ( 𝐹 ‘ 𝑦 )  ∈  ran  𝐹 ) | 
						
							| 140 | 133 138 139 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝒫  𝑋  ∩  Fin ) )  ∧  𝑦  ∈  𝑥 )  →  ( 𝐹 ‘ 𝑦 )  ∈  ran  𝐹 ) | 
						
							| 141 | 140 | adantr | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝒫  𝑋  ∩  Fin ) )  ∧  𝑦  ∈  𝑥 )  ∧  ( 𝐹 ‘ 𝑦 )  =  +∞ )  →  ( 𝐹 ‘ 𝑦 )  ∈  ran  𝐹 ) | 
						
							| 142 | 131 141 | eqeltrd | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝒫  𝑋  ∩  Fin ) )  ∧  𝑦  ∈  𝑥 )  ∧  ( 𝐹 ‘ 𝑦 )  =  +∞ )  →  +∞  ∈  ran  𝐹 ) | 
						
							| 143 | 142 | adantl3r | ⊢ ( ( ( ( ( 𝜑  ∧  ¬  +∞  ∈  ran  𝐹 )  ∧  𝑥  ∈  ( 𝒫  𝑋  ∩  Fin ) )  ∧  𝑦  ∈  𝑥 )  ∧  ( 𝐹 ‘ 𝑦 )  =  +∞ )  →  +∞  ∈  ran  𝐹 ) | 
						
							| 144 | 96 | ad3antrrr | ⊢ ( ( ( ( ( 𝜑  ∧  ¬  +∞  ∈  ran  𝐹 )  ∧  𝑥  ∈  ( 𝒫  𝑋  ∩  Fin ) )  ∧  𝑦  ∈  𝑥 )  ∧  ( 𝐹 ‘ 𝑦 )  =  +∞ )  →  ¬  +∞  ∈  ran  𝐹 ) | 
						
							| 145 | 143 144 | pm2.65da | ⊢ ( ( ( ( 𝜑  ∧  ¬  +∞  ∈  ran  𝐹 )  ∧  𝑥  ∈  ( 𝒫  𝑋  ∩  Fin ) )  ∧  𝑦  ∈  𝑥 )  →  ¬  ( 𝐹 ‘ 𝑦 )  =  +∞ ) | 
						
							| 146 | 145 | neqned | ⊢ ( ( ( ( 𝜑  ∧  ¬  +∞  ∈  ran  𝐹 )  ∧  𝑥  ∈  ( 𝒫  𝑋  ∩  Fin ) )  ∧  𝑦  ∈  𝑥 )  →  ( 𝐹 ‘ 𝑦 )  ≠  +∞ ) | 
						
							| 147 |  | ge0xrre | ⊢ ( ( ( 𝐹 ‘ 𝑦 )  ∈  ( 0 [,] +∞ )  ∧  ( 𝐹 ‘ 𝑦 )  ≠  +∞ )  →  ( 𝐹 ‘ 𝑦 )  ∈  ℝ ) | 
						
							| 148 | 125 146 147 | syl2anc | ⊢ ( ( ( ( 𝜑  ∧  ¬  +∞  ∈  ran  𝐹 )  ∧  𝑥  ∈  ( 𝒫  𝑋  ∩  Fin ) )  ∧  𝑦  ∈  𝑥 )  →  ( 𝐹 ‘ 𝑦 )  ∈  ℝ ) | 
						
							| 149 | 148 | ltpnfd | ⊢ ( ( ( ( 𝜑  ∧  ¬  +∞  ∈  ran  𝐹 )  ∧  𝑥  ∈  ( 𝒫  𝑋  ∩  Fin ) )  ∧  𝑦  ∈  𝑥 )  →  ( 𝐹 ‘ 𝑦 )  <  +∞ ) | 
						
							| 150 | 120 121 126 128 149 | elicod | ⊢ ( ( ( ( 𝜑  ∧  ¬  +∞  ∈  ran  𝐹 )  ∧  𝑥  ∈  ( 𝒫  𝑋  ∩  Fin ) )  ∧  𝑦  ∈  𝑥 )  →  ( 𝐹 ‘ 𝑦 )  ∈  ( 0 [,) +∞ ) ) | 
						
							| 151 |  | eqid | ⊢ ( 𝑦  ∈  𝑥  ↦  ( 𝐹 ‘ 𝑦 ) )  =  ( 𝑦  ∈  𝑥  ↦  ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 152 | 150 151 | fmptd | ⊢ ( ( ( 𝜑  ∧  ¬  +∞  ∈  ran  𝐹 )  ∧  𝑥  ∈  ( 𝒫  𝑋  ∩  Fin ) )  →  ( 𝑦  ∈  𝑥  ↦  ( 𝐹 ‘ 𝑦 ) ) : 𝑥 ⟶ ( 0 [,) +∞ ) ) | 
						
							| 153 |  | 0e0icopnf | ⊢ 0  ∈  ( 0 [,) +∞ ) | 
						
							| 154 | 153 | a1i | ⊢ ( ( ( 𝜑  ∧  ¬  +∞  ∈  ran  𝐹 )  ∧  𝑥  ∈  ( 𝒫  𝑋  ∩  Fin ) )  →  0  ∈  ( 0 [,) +∞ ) ) | 
						
							| 155 |  | eliccxr | ⊢ ( 𝑦  ∈  ( 0 [,] +∞ )  →  𝑦  ∈  ℝ* ) | 
						
							| 156 |  | xaddlid | ⊢ ( 𝑦  ∈  ℝ*  →  ( 0  +𝑒  𝑦 )  =  𝑦 ) | 
						
							| 157 |  | xaddrid | ⊢ ( 𝑦  ∈  ℝ*  →  ( 𝑦  +𝑒  0 )  =  𝑦 ) | 
						
							| 158 | 156 157 | jca | ⊢ ( 𝑦  ∈  ℝ*  →  ( ( 0  +𝑒  𝑦 )  =  𝑦  ∧  ( 𝑦  +𝑒  0 )  =  𝑦 ) ) | 
						
							| 159 | 155 158 | syl | ⊢ ( 𝑦  ∈  ( 0 [,] +∞ )  →  ( ( 0  +𝑒  𝑦 )  =  𝑦  ∧  ( 𝑦  +𝑒  0 )  =  𝑦 ) ) | 
						
							| 160 | 159 | adantl | ⊢ ( ( ( ( 𝜑  ∧  ¬  +∞  ∈  ran  𝐹 )  ∧  𝑥  ∈  ( 𝒫  𝑋  ∩  Fin ) )  ∧  𝑦  ∈  ( 0 [,] +∞ ) )  →  ( ( 0  +𝑒  𝑦 )  =  𝑦  ∧  ( 𝑦  +𝑒  0 )  =  𝑦 ) ) | 
						
							| 161 | 72 108 114 116 117 118 152 154 160 | gsumress | ⊢ ( ( ( 𝜑  ∧  ¬  +∞  ∈  ran  𝐹 )  ∧  𝑥  ∈  ( 𝒫  𝑋  ∩  Fin ) )  →  ( 𝐺  Σg  ( 𝑦  ∈  𝑥  ↦  ( 𝐹 ‘ 𝑦 ) ) )  =  ( ( ℝ*𝑠  ↾s  ( 0 [,) +∞ ) )  Σg  ( 𝑦  ∈  𝑥  ↦  ( 𝐹 ‘ 𝑦 ) ) ) ) | 
						
							| 162 |  | rege0subm | ⊢ ( 0 [,) +∞ )  ∈  ( SubMnd ‘ ℂfld ) | 
						
							| 163 | 162 | a1i | ⊢ ( ( ( 𝜑  ∧  ¬  +∞  ∈  ran  𝐹 )  ∧  𝑥  ∈  ( 𝒫  𝑋  ∩  Fin ) )  →  ( 0 [,) +∞ )  ∈  ( SubMnd ‘ ℂfld ) ) | 
						
							| 164 |  | eqid | ⊢ ( ℂfld  ↾s  ( 0 [,) +∞ ) )  =  ( ℂfld  ↾s  ( 0 [,) +∞ ) ) | 
						
							| 165 | 117 163 152 164 | gsumsubm | ⊢ ( ( ( 𝜑  ∧  ¬  +∞  ∈  ran  𝐹 )  ∧  𝑥  ∈  ( 𝒫  𝑋  ∩  Fin ) )  →  ( ℂfld  Σg  ( 𝑦  ∈  𝑥  ↦  ( 𝐹 ‘ 𝑦 ) ) )  =  ( ( ℂfld  ↾s  ( 0 [,) +∞ ) )  Σg  ( 𝑦  ∈  𝑥  ↦  ( 𝐹 ‘ 𝑦 ) ) ) ) | 
						
							| 166 |  | eqidd | ⊢ ( ( ( 𝜑  ∧  ¬  +∞  ∈  ran  𝐹 )  ∧  𝑥  ∈  ( 𝒫  𝑋  ∩  Fin ) )  →  ( ( ℂfld  ↾s  ( 0 [,) +∞ ) )  Σg  ( 𝑦  ∈  𝑥  ↦  ( 𝐹 ‘ 𝑦 ) ) )  =  ( ( ℂfld  ↾s  ( 0 [,) +∞ ) )  Σg  ( 𝑦  ∈  𝑥  ↦  ( 𝐹 ‘ 𝑦 ) ) ) ) | 
						
							| 167 |  | vex | ⊢ 𝑥  ∈  V | 
						
							| 168 | 167 | mptex | ⊢ ( 𝑦  ∈  𝑥  ↦  ( 𝐹 ‘ 𝑦 ) )  ∈  V | 
						
							| 169 | 168 | a1i | ⊢ ( ( ( 𝜑  ∧  ¬  +∞  ∈  ran  𝐹 )  ∧  𝑥  ∈  ( 𝒫  𝑋  ∩  Fin ) )  →  ( 𝑦  ∈  𝑥  ↦  ( 𝐹 ‘ 𝑦 ) )  ∈  V ) | 
						
							| 170 |  | ovexd | ⊢ ( ( ( 𝜑  ∧  ¬  +∞  ∈  ran  𝐹 )  ∧  𝑥  ∈  ( 𝒫  𝑋  ∩  Fin ) )  →  ( ℂfld  ↾s  ( 0 [,) +∞ ) )  ∈  V ) | 
						
							| 171 |  | ovexd | ⊢ ( ( ( 𝜑  ∧  ¬  +∞  ∈  ran  𝐹 )  ∧  𝑥  ∈  ( 𝒫  𝑋  ∩  Fin ) )  →  ( ℝ*𝑠  ↾s  ( 0 [,) +∞ ) )  ∈  V ) | 
						
							| 172 |  | rge0ssre | ⊢ ( 0 [,) +∞ )  ⊆  ℝ | 
						
							| 173 |  | ax-resscn | ⊢ ℝ  ⊆  ℂ | 
						
							| 174 | 172 173 | sstri | ⊢ ( 0 [,) +∞ )  ⊆  ℂ | 
						
							| 175 |  | cnfldbas | ⊢ ℂ  =  ( Base ‘ ℂfld ) | 
						
							| 176 | 164 175 | ressbas2 | ⊢ ( ( 0 [,) +∞ )  ⊆  ℂ  →  ( 0 [,) +∞ )  =  ( Base ‘ ( ℂfld  ↾s  ( 0 [,) +∞ ) ) ) ) | 
						
							| 177 | 174 176 | ax-mp | ⊢ ( 0 [,) +∞ )  =  ( Base ‘ ( ℂfld  ↾s  ( 0 [,) +∞ ) ) ) | 
						
							| 178 | 177 | eqcomi | ⊢ ( Base ‘ ( ℂfld  ↾s  ( 0 [,) +∞ ) ) )  =  ( 0 [,) +∞ ) | 
						
							| 179 | 110 21 | sstri | ⊢ ( 0 [,) +∞ )  ⊆  ℝ* | 
						
							| 180 |  | eqid | ⊢ ( ℝ*𝑠  ↾s  ( 0 [,) +∞ ) )  =  ( ℝ*𝑠  ↾s  ( 0 [,) +∞ ) ) | 
						
							| 181 | 180 69 | ressbas2 | ⊢ ( ( 0 [,) +∞ )  ⊆  ℝ*  →  ( 0 [,) +∞ )  =  ( Base ‘ ( ℝ*𝑠  ↾s  ( 0 [,) +∞ ) ) ) ) | 
						
							| 182 | 179 181 | ax-mp | ⊢ ( 0 [,) +∞ )  =  ( Base ‘ ( ℝ*𝑠  ↾s  ( 0 [,) +∞ ) ) ) | 
						
							| 183 | 178 182 | eqtri | ⊢ ( Base ‘ ( ℂfld  ↾s  ( 0 [,) +∞ ) ) )  =  ( Base ‘ ( ℝ*𝑠  ↾s  ( 0 [,) +∞ ) ) ) | 
						
							| 184 | 183 | a1i | ⊢ ( ( ( 𝜑  ∧  ¬  +∞  ∈  ran  𝐹 )  ∧  𝑥  ∈  ( 𝒫  𝑋  ∩  Fin ) )  →  ( Base ‘ ( ℂfld  ↾s  ( 0 [,) +∞ ) ) )  =  ( Base ‘ ( ℝ*𝑠  ↾s  ( 0 [,) +∞ ) ) ) ) | 
						
							| 185 |  | rge0srg | ⊢ ( ℂfld  ↾s  ( 0 [,) +∞ ) )  ∈  SRing | 
						
							| 186 | 185 | a1i | ⊢ ( ( 𝑠  ∈  ( Base ‘ ( ℂfld  ↾s  ( 0 [,) +∞ ) ) )  ∧  𝑡  ∈  ( Base ‘ ( ℂfld  ↾s  ( 0 [,) +∞ ) ) ) )  →  ( ℂfld  ↾s  ( 0 [,) +∞ ) )  ∈  SRing ) | 
						
							| 187 |  | simpl | ⊢ ( ( 𝑠  ∈  ( Base ‘ ( ℂfld  ↾s  ( 0 [,) +∞ ) ) )  ∧  𝑡  ∈  ( Base ‘ ( ℂfld  ↾s  ( 0 [,) +∞ ) ) ) )  →  𝑠  ∈  ( Base ‘ ( ℂfld  ↾s  ( 0 [,) +∞ ) ) ) ) | 
						
							| 188 |  | simpr | ⊢ ( ( 𝑠  ∈  ( Base ‘ ( ℂfld  ↾s  ( 0 [,) +∞ ) ) )  ∧  𝑡  ∈  ( Base ‘ ( ℂfld  ↾s  ( 0 [,) +∞ ) ) ) )  →  𝑡  ∈  ( Base ‘ ( ℂfld  ↾s  ( 0 [,) +∞ ) ) ) ) | 
						
							| 189 |  | eqid | ⊢ ( Base ‘ ( ℂfld  ↾s  ( 0 [,) +∞ ) ) )  =  ( Base ‘ ( ℂfld  ↾s  ( 0 [,) +∞ ) ) ) | 
						
							| 190 |  | eqid | ⊢ ( +g ‘ ( ℂfld  ↾s  ( 0 [,) +∞ ) ) )  =  ( +g ‘ ( ℂfld  ↾s  ( 0 [,) +∞ ) ) ) | 
						
							| 191 | 189 190 | srgacl | ⊢ ( ( ( ℂfld  ↾s  ( 0 [,) +∞ ) )  ∈  SRing  ∧  𝑠  ∈  ( Base ‘ ( ℂfld  ↾s  ( 0 [,) +∞ ) ) )  ∧  𝑡  ∈  ( Base ‘ ( ℂfld  ↾s  ( 0 [,) +∞ ) ) ) )  →  ( 𝑠 ( +g ‘ ( ℂfld  ↾s  ( 0 [,) +∞ ) ) ) 𝑡 )  ∈  ( Base ‘ ( ℂfld  ↾s  ( 0 [,) +∞ ) ) ) ) | 
						
							| 192 | 186 187 188 191 | syl3anc | ⊢ ( ( 𝑠  ∈  ( Base ‘ ( ℂfld  ↾s  ( 0 [,) +∞ ) ) )  ∧  𝑡  ∈  ( Base ‘ ( ℂfld  ↾s  ( 0 [,) +∞ ) ) ) )  →  ( 𝑠 ( +g ‘ ( ℂfld  ↾s  ( 0 [,) +∞ ) ) ) 𝑡 )  ∈  ( Base ‘ ( ℂfld  ↾s  ( 0 [,) +∞ ) ) ) ) | 
						
							| 193 | 192 | adantl | ⊢ ( ( ( ( 𝜑  ∧  ¬  +∞  ∈  ran  𝐹 )  ∧  𝑥  ∈  ( 𝒫  𝑋  ∩  Fin ) )  ∧  ( 𝑠  ∈  ( Base ‘ ( ℂfld  ↾s  ( 0 [,) +∞ ) ) )  ∧  𝑡  ∈  ( Base ‘ ( ℂfld  ↾s  ( 0 [,) +∞ ) ) ) ) )  →  ( 𝑠 ( +g ‘ ( ℂfld  ↾s  ( 0 [,) +∞ ) ) ) 𝑡 )  ∈  ( Base ‘ ( ℂfld  ↾s  ( 0 [,) +∞ ) ) ) ) | 
						
							| 194 | 172 | a1i | ⊢ ( 𝑠  ∈  ( Base ‘ ( ℂfld  ↾s  ( 0 [,) +∞ ) ) )  →  ( 0 [,) +∞ )  ⊆  ℝ ) | 
						
							| 195 |  | id | ⊢ ( 𝑠  ∈  ( Base ‘ ( ℂfld  ↾s  ( 0 [,) +∞ ) ) )  →  𝑠  ∈  ( Base ‘ ( ℂfld  ↾s  ( 0 [,) +∞ ) ) ) ) | 
						
							| 196 | 195 178 | eleqtrdi | ⊢ ( 𝑠  ∈  ( Base ‘ ( ℂfld  ↾s  ( 0 [,) +∞ ) ) )  →  𝑠  ∈  ( 0 [,) +∞ ) ) | 
						
							| 197 | 194 196 | sseldd | ⊢ ( 𝑠  ∈  ( Base ‘ ( ℂfld  ↾s  ( 0 [,) +∞ ) ) )  →  𝑠  ∈  ℝ ) | 
						
							| 198 | 197 | adantr | ⊢ ( ( 𝑠  ∈  ( Base ‘ ( ℂfld  ↾s  ( 0 [,) +∞ ) ) )  ∧  𝑡  ∈  ( Base ‘ ( ℂfld  ↾s  ( 0 [,) +∞ ) ) ) )  →  𝑠  ∈  ℝ ) | 
						
							| 199 | 172 | a1i | ⊢ ( 𝑡  ∈  ( Base ‘ ( ℂfld  ↾s  ( 0 [,) +∞ ) ) )  →  ( 0 [,) +∞ )  ⊆  ℝ ) | 
						
							| 200 |  | id | ⊢ ( 𝑡  ∈  ( Base ‘ ( ℂfld  ↾s  ( 0 [,) +∞ ) ) )  →  𝑡  ∈  ( Base ‘ ( ℂfld  ↾s  ( 0 [,) +∞ ) ) ) ) | 
						
							| 201 | 200 178 | eleqtrdi | ⊢ ( 𝑡  ∈  ( Base ‘ ( ℂfld  ↾s  ( 0 [,) +∞ ) ) )  →  𝑡  ∈  ( 0 [,) +∞ ) ) | 
						
							| 202 | 199 201 | sseldd | ⊢ ( 𝑡  ∈  ( Base ‘ ( ℂfld  ↾s  ( 0 [,) +∞ ) ) )  →  𝑡  ∈  ℝ ) | 
						
							| 203 | 202 | adantl | ⊢ ( ( 𝑠  ∈  ( Base ‘ ( ℂfld  ↾s  ( 0 [,) +∞ ) ) )  ∧  𝑡  ∈  ( Base ‘ ( ℂfld  ↾s  ( 0 [,) +∞ ) ) ) )  →  𝑡  ∈  ℝ ) | 
						
							| 204 |  | rexadd | ⊢ ( ( 𝑠  ∈  ℝ  ∧  𝑡  ∈  ℝ )  →  ( 𝑠  +𝑒  𝑡 )  =  ( 𝑠  +  𝑡 ) ) | 
						
							| 205 | 204 | eqcomd | ⊢ ( ( 𝑠  ∈  ℝ  ∧  𝑡  ∈  ℝ )  →  ( 𝑠  +  𝑡 )  =  ( 𝑠  +𝑒  𝑡 ) ) | 
						
							| 206 | 162 | elexi | ⊢ ( 0 [,) +∞ )  ∈  V | 
						
							| 207 |  | cnfldadd | ⊢  +   =  ( +g ‘ ℂfld ) | 
						
							| 208 | 164 207 | ressplusg | ⊢ ( ( 0 [,) +∞ )  ∈  V  →   +   =  ( +g ‘ ( ℂfld  ↾s  ( 0 [,) +∞ ) ) ) ) | 
						
							| 209 | 206 208 | ax-mp | ⊢  +   =  ( +g ‘ ( ℂfld  ↾s  ( 0 [,) +∞ ) ) ) | 
						
							| 210 | 209 207 | eqtr3i | ⊢ ( +g ‘ ( ℂfld  ↾s  ( 0 [,) +∞ ) ) )  =  ( +g ‘ ℂfld ) | 
						
							| 211 | 210 207 | eqtr4i | ⊢ ( +g ‘ ( ℂfld  ↾s  ( 0 [,) +∞ ) ) )  =   + | 
						
							| 212 | 211 | oveqi | ⊢ ( 𝑠 ( +g ‘ ( ℂfld  ↾s  ( 0 [,) +∞ ) ) ) 𝑡 )  =  ( 𝑠  +  𝑡 ) | 
						
							| 213 | 212 | a1i | ⊢ ( ( 𝑠  ∈  ℝ  ∧  𝑡  ∈  ℝ )  →  ( 𝑠 ( +g ‘ ( ℂfld  ↾s  ( 0 [,) +∞ ) ) ) 𝑡 )  =  ( 𝑠  +  𝑡 ) ) | 
						
							| 214 | 180 104 | ressplusg | ⊢ ( ( 0 [,) +∞ )  ∈  V  →   +𝑒   =  ( +g ‘ ( ℝ*𝑠  ↾s  ( 0 [,) +∞ ) ) ) ) | 
						
							| 215 | 206 214 | ax-mp | ⊢  +𝑒   =  ( +g ‘ ( ℝ*𝑠  ↾s  ( 0 [,) +∞ ) ) ) | 
						
							| 216 | 215 | eqcomi | ⊢ ( +g ‘ ( ℝ*𝑠  ↾s  ( 0 [,) +∞ ) ) )  =   +𝑒 | 
						
							| 217 | 216 | oveqi | ⊢ ( 𝑠 ( +g ‘ ( ℝ*𝑠  ↾s  ( 0 [,) +∞ ) ) ) 𝑡 )  =  ( 𝑠  +𝑒  𝑡 ) | 
						
							| 218 | 217 | a1i | ⊢ ( ( 𝑠  ∈  ℝ  ∧  𝑡  ∈  ℝ )  →  ( 𝑠 ( +g ‘ ( ℝ*𝑠  ↾s  ( 0 [,) +∞ ) ) ) 𝑡 )  =  ( 𝑠  +𝑒  𝑡 ) ) | 
						
							| 219 | 205 213 218 | 3eqtr4d | ⊢ ( ( 𝑠  ∈  ℝ  ∧  𝑡  ∈  ℝ )  →  ( 𝑠 ( +g ‘ ( ℂfld  ↾s  ( 0 [,) +∞ ) ) ) 𝑡 )  =  ( 𝑠 ( +g ‘ ( ℝ*𝑠  ↾s  ( 0 [,) +∞ ) ) ) 𝑡 ) ) | 
						
							| 220 | 198 203 219 | syl2anc | ⊢ ( ( 𝑠  ∈  ( Base ‘ ( ℂfld  ↾s  ( 0 [,) +∞ ) ) )  ∧  𝑡  ∈  ( Base ‘ ( ℂfld  ↾s  ( 0 [,) +∞ ) ) ) )  →  ( 𝑠 ( +g ‘ ( ℂfld  ↾s  ( 0 [,) +∞ ) ) ) 𝑡 )  =  ( 𝑠 ( +g ‘ ( ℝ*𝑠  ↾s  ( 0 [,) +∞ ) ) ) 𝑡 ) ) | 
						
							| 221 | 220 | adantl | ⊢ ( ( ( ( 𝜑  ∧  ¬  +∞  ∈  ran  𝐹 )  ∧  𝑥  ∈  ( 𝒫  𝑋  ∩  Fin ) )  ∧  ( 𝑠  ∈  ( Base ‘ ( ℂfld  ↾s  ( 0 [,) +∞ ) ) )  ∧  𝑡  ∈  ( Base ‘ ( ℂfld  ↾s  ( 0 [,) +∞ ) ) ) ) )  →  ( 𝑠 ( +g ‘ ( ℂfld  ↾s  ( 0 [,) +∞ ) ) ) 𝑡 )  =  ( 𝑠 ( +g ‘ ( ℝ*𝑠  ↾s  ( 0 [,) +∞ ) ) ) 𝑡 ) ) | 
						
							| 222 |  | funmpt | ⊢ Fun  ( 𝑦  ∈  𝑥  ↦  ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 223 | 222 | a1i | ⊢ ( ( ( 𝜑  ∧  ¬  +∞  ∈  ran  𝐹 )  ∧  𝑥  ∈  ( 𝒫  𝑋  ∩  Fin ) )  →  Fun  ( 𝑦  ∈  𝑥  ↦  ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 224 | 150 177 | eleqtrdi | ⊢ ( ( ( ( 𝜑  ∧  ¬  +∞  ∈  ran  𝐹 )  ∧  𝑥  ∈  ( 𝒫  𝑋  ∩  Fin ) )  ∧  𝑦  ∈  𝑥 )  →  ( 𝐹 ‘ 𝑦 )  ∈  ( Base ‘ ( ℂfld  ↾s  ( 0 [,) +∞ ) ) ) ) | 
						
							| 225 | 224 | ralrimiva | ⊢ ( ( ( 𝜑  ∧  ¬  +∞  ∈  ran  𝐹 )  ∧  𝑥  ∈  ( 𝒫  𝑋  ∩  Fin ) )  →  ∀ 𝑦  ∈  𝑥 ( 𝐹 ‘ 𝑦 )  ∈  ( Base ‘ ( ℂfld  ↾s  ( 0 [,) +∞ ) ) ) ) | 
						
							| 226 | 151 | rnmptss | ⊢ ( ∀ 𝑦  ∈  𝑥 ( 𝐹 ‘ 𝑦 )  ∈  ( Base ‘ ( ℂfld  ↾s  ( 0 [,) +∞ ) ) )  →  ran  ( 𝑦  ∈  𝑥  ↦  ( 𝐹 ‘ 𝑦 ) )  ⊆  ( Base ‘ ( ℂfld  ↾s  ( 0 [,) +∞ ) ) ) ) | 
						
							| 227 | 225 226 | syl | ⊢ ( ( ( 𝜑  ∧  ¬  +∞  ∈  ran  𝐹 )  ∧  𝑥  ∈  ( 𝒫  𝑋  ∩  Fin ) )  →  ran  ( 𝑦  ∈  𝑥  ↦  ( 𝐹 ‘ 𝑦 ) )  ⊆  ( Base ‘ ( ℂfld  ↾s  ( 0 [,) +∞ ) ) ) ) | 
						
							| 228 | 169 170 171 184 193 221 223 227 | gsumpropd2 | ⊢ ( ( ( 𝜑  ∧  ¬  +∞  ∈  ran  𝐹 )  ∧  𝑥  ∈  ( 𝒫  𝑋  ∩  Fin ) )  →  ( ( ℂfld  ↾s  ( 0 [,) +∞ ) )  Σg  ( 𝑦  ∈  𝑥  ↦  ( 𝐹 ‘ 𝑦 ) ) )  =  ( ( ℝ*𝑠  ↾s  ( 0 [,) +∞ ) )  Σg  ( 𝑦  ∈  𝑥  ↦  ( 𝐹 ‘ 𝑦 ) ) ) ) | 
						
							| 229 | 165 166 228 | 3eqtrd | ⊢ ( ( ( 𝜑  ∧  ¬  +∞  ∈  ran  𝐹 )  ∧  𝑥  ∈  ( 𝒫  𝑋  ∩  Fin ) )  →  ( ℂfld  Σg  ( 𝑦  ∈  𝑥  ↦  ( 𝐹 ‘ 𝑦 ) ) )  =  ( ( ℝ*𝑠  ↾s  ( 0 [,) +∞ ) )  Σg  ( 𝑦  ∈  𝑥  ↦  ( 𝐹 ‘ 𝑦 ) ) ) ) | 
						
							| 230 | 30 | adantl | ⊢ ( ( ( 𝜑  ∧  ¬  +∞  ∈  ran  𝐹 )  ∧  𝑥  ∈  ( 𝒫  𝑋  ∩  Fin ) )  →  𝑥  ∈  Fin ) | 
						
							| 231 | 148 | recnd | ⊢ ( ( ( ( 𝜑  ∧  ¬  +∞  ∈  ran  𝐹 )  ∧  𝑥  ∈  ( 𝒫  𝑋  ∩  Fin ) )  ∧  𝑦  ∈  𝑥 )  →  ( 𝐹 ‘ 𝑦 )  ∈  ℂ ) | 
						
							| 232 | 230 231 | gsumfsum | ⊢ ( ( ( 𝜑  ∧  ¬  +∞  ∈  ran  𝐹 )  ∧  𝑥  ∈  ( 𝒫  𝑋  ∩  Fin ) )  →  ( ℂfld  Σg  ( 𝑦  ∈  𝑥  ↦  ( 𝐹 ‘ 𝑦 ) ) )  =  Σ 𝑦  ∈  𝑥 ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 233 | 229 232 | eqtr3d | ⊢ ( ( ( 𝜑  ∧  ¬  +∞  ∈  ran  𝐹 )  ∧  𝑥  ∈  ( 𝒫  𝑋  ∩  Fin ) )  →  ( ( ℝ*𝑠  ↾s  ( 0 [,) +∞ ) )  Σg  ( 𝑦  ∈  𝑥  ↦  ( 𝐹 ‘ 𝑦 ) ) )  =  Σ 𝑦  ∈  𝑥 ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 234 | 101 161 233 | 3eqtrrd | ⊢ ( ( ( 𝜑  ∧  ¬  +∞  ∈  ran  𝐹 )  ∧  𝑥  ∈  ( 𝒫  𝑋  ∩  Fin ) )  →  Σ 𝑦  ∈  𝑥 ( 𝐹 ‘ 𝑦 )  =  ( 𝐺  Σg  ( 𝐹  ↾  𝑥 ) ) ) | 
						
							| 235 | 234 | mpteq2dva | ⊢ ( ( 𝜑  ∧  ¬  +∞  ∈  ran  𝐹 )  →  ( 𝑥  ∈  ( 𝒫  𝑋  ∩  Fin )  ↦  Σ 𝑦  ∈  𝑥 ( 𝐹 ‘ 𝑦 ) )  =  ( 𝑥  ∈  ( 𝒫  𝑋  ∩  Fin )  ↦  ( 𝐺  Σg  ( 𝐹  ↾  𝑥 ) ) ) ) | 
						
							| 236 | 235 | rneqd | ⊢ ( ( 𝜑  ∧  ¬  +∞  ∈  ran  𝐹 )  →  ran  ( 𝑥  ∈  ( 𝒫  𝑋  ∩  Fin )  ↦  Σ 𝑦  ∈  𝑥 ( 𝐹 ‘ 𝑦 ) )  =  ran  ( 𝑥  ∈  ( 𝒫  𝑋  ∩  Fin )  ↦  ( 𝐺  Σg  ( 𝐹  ↾  𝑥 ) ) ) ) | 
						
							| 237 | 236 | supeq1d | ⊢ ( ( 𝜑  ∧  ¬  +∞  ∈  ran  𝐹 )  →  sup ( ran  ( 𝑥  ∈  ( 𝒫  𝑋  ∩  Fin )  ↦  Σ 𝑦  ∈  𝑥 ( 𝐹 ‘ 𝑦 ) ) ,  ℝ* ,   <  )  =  sup ( ran  ( 𝑥  ∈  ( 𝒫  𝑋  ∩  Fin )  ↦  ( 𝐺  Σg  ( 𝐹  ↾  𝑥 ) ) ) ,  ℝ* ,   <  ) ) | 
						
							| 238 | 98 237 | eqtrd | ⊢ ( ( 𝜑  ∧  ¬  +∞  ∈  ran  𝐹 )  →  ( Σ^ ‘ 𝐹 )  =  sup ( ran  ( 𝑥  ∈  ( 𝒫  𝑋  ∩  Fin )  ↦  ( 𝐺  Σg  ( 𝐹  ↾  𝑥 ) ) ) ,  ℝ* ,   <  ) ) | 
						
							| 239 | 93 238 | pm2.61dan | ⊢ ( 𝜑  →  ( Σ^ ‘ 𝐹 )  =  sup ( ran  ( 𝑥  ∈  ( 𝒫  𝑋  ∩  Fin )  ↦  ( 𝐺  Σg  ( 𝐹  ↾  𝑥 ) ) ) ,  ℝ* ,   <  ) ) | 
						
							| 240 | 1 2 3 4 | xrge0tsms | ⊢ ( 𝜑  →  ( 𝐺  tsums  𝐹 )  =  { sup ( ran  ( 𝑥  ∈  ( 𝒫  𝑋  ∩  Fin )  ↦  ( 𝐺  Σg  ( 𝐹  ↾  𝑥 ) ) ) ,  ℝ* ,   <  ) } ) | 
						
							| 241 | 239 240 | eleq12d | ⊢ ( 𝜑  →  ( ( Σ^ ‘ 𝐹 )  ∈  ( 𝐺  tsums  𝐹 )  ↔  sup ( ran  ( 𝑥  ∈  ( 𝒫  𝑋  ∩  Fin )  ↦  ( 𝐺  Σg  ( 𝐹  ↾  𝑥 ) ) ) ,  ℝ* ,   <  )  ∈  { sup ( ran  ( 𝑥  ∈  ( 𝒫  𝑋  ∩  Fin )  ↦  ( 𝐺  Σg  ( 𝐹  ↾  𝑥 ) ) ) ,  ℝ* ,   <  ) } ) ) | 
						
							| 242 | 11 241 | mpbird | ⊢ ( 𝜑  →  ( Σ^ ‘ 𝐹 )  ∈  ( 𝐺  tsums  𝐹 ) ) |