| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sge0tsms.g |
⊢ 𝐺 = ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) |
| 2 |
|
sge0tsms.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
| 3 |
|
sge0tsms.f |
⊢ ( 𝜑 → 𝐹 : 𝑋 ⟶ ( 0 [,] +∞ ) ) |
| 4 |
|
eqid |
⊢ sup ( ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑥 ) ) ) , ℝ* , < ) = sup ( ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑥 ) ) ) , ℝ* , < ) |
| 5 |
4
|
a1i |
⊢ ( 𝜑 → sup ( ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑥 ) ) ) , ℝ* , < ) = sup ( ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑥 ) ) ) , ℝ* , < ) ) |
| 6 |
|
xrltso |
⊢ < Or ℝ* |
| 7 |
6
|
supex |
⊢ sup ( ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑥 ) ) ) , ℝ* , < ) ∈ V |
| 8 |
7
|
a1i |
⊢ ( 𝜑 → sup ( ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑥 ) ) ) , ℝ* , < ) ∈ V ) |
| 9 |
|
elsng |
⊢ ( sup ( ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑥 ) ) ) , ℝ* , < ) ∈ V → ( sup ( ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑥 ) ) ) , ℝ* , < ) ∈ { sup ( ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑥 ) ) ) , ℝ* , < ) } ↔ sup ( ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑥 ) ) ) , ℝ* , < ) = sup ( ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑥 ) ) ) , ℝ* , < ) ) ) |
| 10 |
8 9
|
syl |
⊢ ( 𝜑 → ( sup ( ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑥 ) ) ) , ℝ* , < ) ∈ { sup ( ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑥 ) ) ) , ℝ* , < ) } ↔ sup ( ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑥 ) ) ) , ℝ* , < ) = sup ( ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑥 ) ) ) , ℝ* , < ) ) ) |
| 11 |
5 10
|
mpbird |
⊢ ( 𝜑 → sup ( ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑥 ) ) ) , ℝ* , < ) ∈ { sup ( ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑥 ) ) ) , ℝ* , < ) } ) |
| 12 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ +∞ ∈ ran 𝐹 ) → 𝑋 ∈ 𝑉 ) |
| 13 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ +∞ ∈ ran 𝐹 ) → 𝐹 : 𝑋 ⟶ ( 0 [,] +∞ ) ) |
| 14 |
|
simpr |
⊢ ( ( 𝜑 ∧ +∞ ∈ ran 𝐹 ) → +∞ ∈ ran 𝐹 ) |
| 15 |
12 13 14
|
sge0pnfval |
⊢ ( ( 𝜑 ∧ +∞ ∈ ran 𝐹 ) → ( Σ^ ‘ 𝐹 ) = +∞ ) |
| 16 |
3
|
ffnd |
⊢ ( 𝜑 → 𝐹 Fn 𝑋 ) |
| 17 |
16
|
adantr |
⊢ ( ( 𝜑 ∧ +∞ ∈ ran 𝐹 ) → 𝐹 Fn 𝑋 ) |
| 18 |
|
fvelrnb |
⊢ ( 𝐹 Fn 𝑋 → ( +∞ ∈ ran 𝐹 ↔ ∃ 𝑦 ∈ 𝑋 ( 𝐹 ‘ 𝑦 ) = +∞ ) ) |
| 19 |
17 18
|
syl |
⊢ ( ( 𝜑 ∧ +∞ ∈ ran 𝐹 ) → ( +∞ ∈ ran 𝐹 ↔ ∃ 𝑦 ∈ 𝑋 ( 𝐹 ‘ 𝑦 ) = +∞ ) ) |
| 20 |
14 19
|
mpbid |
⊢ ( ( 𝜑 ∧ +∞ ∈ ran 𝐹 ) → ∃ 𝑦 ∈ 𝑋 ( 𝐹 ‘ 𝑦 ) = +∞ ) |
| 21 |
|
iccssxr |
⊢ ( 0 [,] +∞ ) ⊆ ℝ* |
| 22 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) → 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) |
| 23 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) → 𝐹 : 𝑋 ⟶ ( 0 [,] +∞ ) ) |
| 24 |
|
elinel1 |
⊢ ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) → 𝑥 ∈ 𝒫 𝑋 ) |
| 25 |
|
elpwi |
⊢ ( 𝑥 ∈ 𝒫 𝑋 → 𝑥 ⊆ 𝑋 ) |
| 26 |
24 25
|
syl |
⊢ ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) → 𝑥 ⊆ 𝑋 ) |
| 27 |
26
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) → 𝑥 ⊆ 𝑋 ) |
| 28 |
|
fssres |
⊢ ( ( 𝐹 : 𝑋 ⟶ ( 0 [,] +∞ ) ∧ 𝑥 ⊆ 𝑋 ) → ( 𝐹 ↾ 𝑥 ) : 𝑥 ⟶ ( 0 [,] +∞ ) ) |
| 29 |
23 27 28
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) → ( 𝐹 ↾ 𝑥 ) : 𝑥 ⟶ ( 0 [,] +∞ ) ) |
| 30 |
|
elinel2 |
⊢ ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) → 𝑥 ∈ Fin ) |
| 31 |
30
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) → 𝑥 ∈ Fin ) |
| 32 |
|
0red |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) → 0 ∈ ℝ ) |
| 33 |
29 31 32
|
fdmfifsupp |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) → ( 𝐹 ↾ 𝑥 ) finSupp 0 ) |
| 34 |
1 22 29 33
|
gsumge0cl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) → ( 𝐺 Σg ( 𝐹 ↾ 𝑥 ) ) ∈ ( 0 [,] +∞ ) ) |
| 35 |
21 34
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) → ( 𝐺 Σg ( 𝐹 ↾ 𝑥 ) ) ∈ ℝ* ) |
| 36 |
35
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ( 𝐺 Σg ( 𝐹 ↾ 𝑥 ) ) ∈ ℝ* ) |
| 37 |
36
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑦 ) = +∞ ) → ∀ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ( 𝐺 Σg ( 𝐹 ↾ 𝑥 ) ) ∈ ℝ* ) |
| 38 |
|
eqid |
⊢ ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑥 ) ) ) = ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑥 ) ) ) |
| 39 |
38
|
rnmptss |
⊢ ( ∀ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ( 𝐺 Σg ( 𝐹 ↾ 𝑥 ) ) ∈ ℝ* → ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑥 ) ) ) ⊆ ℝ* ) |
| 40 |
37 39
|
syl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑦 ) = +∞ ) → ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑥 ) ) ) ⊆ ℝ* ) |
| 41 |
|
snelpwi |
⊢ ( 𝑦 ∈ 𝑋 → { 𝑦 } ∈ 𝒫 𝑋 ) |
| 42 |
|
snfi |
⊢ { 𝑦 } ∈ Fin |
| 43 |
42
|
a1i |
⊢ ( 𝑦 ∈ 𝑋 → { 𝑦 } ∈ Fin ) |
| 44 |
41 43
|
elind |
⊢ ( 𝑦 ∈ 𝑋 → { 𝑦 } ∈ ( 𝒫 𝑋 ∩ Fin ) ) |
| 45 |
44
|
3ad2ant2 |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑦 ) = +∞ ) → { 𝑦 } ∈ ( 𝒫 𝑋 ∩ Fin ) ) |
| 46 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) → 𝐹 : 𝑋 ⟶ ( 0 [,] +∞ ) ) |
| 47 |
|
snssi |
⊢ ( 𝑦 ∈ 𝑋 → { 𝑦 } ⊆ 𝑋 ) |
| 48 |
47
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) → { 𝑦 } ⊆ 𝑋 ) |
| 49 |
46 48
|
fssresd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) → ( 𝐹 ↾ { 𝑦 } ) : { 𝑦 } ⟶ ( 0 [,] +∞ ) ) |
| 50 |
49
|
feqmptd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) → ( 𝐹 ↾ { 𝑦 } ) = ( 𝑥 ∈ { 𝑦 } ↦ ( ( 𝐹 ↾ { 𝑦 } ) ‘ 𝑥 ) ) ) |
| 51 |
|
fvres |
⊢ ( 𝑥 ∈ { 𝑦 } → ( ( 𝐹 ↾ { 𝑦 } ) ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) |
| 52 |
51
|
mpteq2ia |
⊢ ( 𝑥 ∈ { 𝑦 } ↦ ( ( 𝐹 ↾ { 𝑦 } ) ‘ 𝑥 ) ) = ( 𝑥 ∈ { 𝑦 } ↦ ( 𝐹 ‘ 𝑥 ) ) |
| 53 |
52
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) → ( 𝑥 ∈ { 𝑦 } ↦ ( ( 𝐹 ↾ { 𝑦 } ) ‘ 𝑥 ) ) = ( 𝑥 ∈ { 𝑦 } ↦ ( 𝐹 ‘ 𝑥 ) ) ) |
| 54 |
50 53
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) → ( 𝐹 ↾ { 𝑦 } ) = ( 𝑥 ∈ { 𝑦 } ↦ ( 𝐹 ‘ 𝑥 ) ) ) |
| 55 |
54
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) → ( 𝐺 Σg ( 𝐹 ↾ { 𝑦 } ) ) = ( 𝐺 Σg ( 𝑥 ∈ { 𝑦 } ↦ ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 56 |
55
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑦 ) = +∞ ) → ( 𝐺 Σg ( 𝐹 ↾ { 𝑦 } ) ) = ( 𝐺 Σg ( 𝑥 ∈ { 𝑦 } ↦ ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 57 |
|
xrge0cmn |
⊢ ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ∈ CMnd |
| 58 |
1 57
|
eqeltri |
⊢ 𝐺 ∈ CMnd |
| 59 |
|
cmnmnd |
⊢ ( 𝐺 ∈ CMnd → 𝐺 ∈ Mnd ) |
| 60 |
58 59
|
ax-mp |
⊢ 𝐺 ∈ Mnd |
| 61 |
60
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑦 ) = +∞ ) → 𝐺 ∈ Mnd ) |
| 62 |
|
simp2 |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑦 ) = +∞ ) → 𝑦 ∈ 𝑋 ) |
| 63 |
3
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) → ( 𝐹 ‘ 𝑦 ) ∈ ( 0 [,] +∞ ) ) |
| 64 |
63
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑦 ) = +∞ ) → ( 𝐹 ‘ 𝑦 ) ∈ ( 0 [,] +∞ ) ) |
| 65 |
|
dfss2 |
⊢ ( ( 0 [,] +∞ ) ⊆ ℝ* ↔ ( ( 0 [,] +∞ ) ∩ ℝ* ) = ( 0 [,] +∞ ) ) |
| 66 |
21 65
|
mpbi |
⊢ ( ( 0 [,] +∞ ) ∩ ℝ* ) = ( 0 [,] +∞ ) |
| 67 |
66
|
eqcomi |
⊢ ( 0 [,] +∞ ) = ( ( 0 [,] +∞ ) ∩ ℝ* ) |
| 68 |
|
ovex |
⊢ ( 0 [,] +∞ ) ∈ V |
| 69 |
|
xrsbas |
⊢ ℝ* = ( Base ‘ ℝ*𝑠 ) |
| 70 |
1 69
|
ressbas |
⊢ ( ( 0 [,] +∞ ) ∈ V → ( ( 0 [,] +∞ ) ∩ ℝ* ) = ( Base ‘ 𝐺 ) ) |
| 71 |
68 70
|
ax-mp |
⊢ ( ( 0 [,] +∞ ) ∩ ℝ* ) = ( Base ‘ 𝐺 ) |
| 72 |
67 71
|
eqtri |
⊢ ( 0 [,] +∞ ) = ( Base ‘ 𝐺 ) |
| 73 |
|
fveq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) |
| 74 |
72 73
|
gsumsn |
⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑦 ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑦 ) ∈ ( 0 [,] +∞ ) ) → ( 𝐺 Σg ( 𝑥 ∈ { 𝑦 } ↦ ( 𝐹 ‘ 𝑥 ) ) ) = ( 𝐹 ‘ 𝑦 ) ) |
| 75 |
61 62 64 74
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑦 ) = +∞ ) → ( 𝐺 Σg ( 𝑥 ∈ { 𝑦 } ↦ ( 𝐹 ‘ 𝑥 ) ) ) = ( 𝐹 ‘ 𝑦 ) ) |
| 76 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑦 ) = +∞ ) → ( 𝐹 ‘ 𝑦 ) = +∞ ) |
| 77 |
56 75 76
|
3eqtrrd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑦 ) = +∞ ) → +∞ = ( 𝐺 Σg ( 𝐹 ↾ { 𝑦 } ) ) ) |
| 78 |
|
reseq2 |
⊢ ( 𝑥 = { 𝑦 } → ( 𝐹 ↾ 𝑥 ) = ( 𝐹 ↾ { 𝑦 } ) ) |
| 79 |
78
|
oveq2d |
⊢ ( 𝑥 = { 𝑦 } → ( 𝐺 Σg ( 𝐹 ↾ 𝑥 ) ) = ( 𝐺 Σg ( 𝐹 ↾ { 𝑦 } ) ) ) |
| 80 |
79
|
rspceeqv |
⊢ ( ( { 𝑦 } ∈ ( 𝒫 𝑋 ∩ Fin ) ∧ +∞ = ( 𝐺 Σg ( 𝐹 ↾ { 𝑦 } ) ) ) → ∃ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) +∞ = ( 𝐺 Σg ( 𝐹 ↾ 𝑥 ) ) ) |
| 81 |
45 77 80
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑦 ) = +∞ ) → ∃ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) +∞ = ( 𝐺 Σg ( 𝐹 ↾ 𝑥 ) ) ) |
| 82 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
| 83 |
82
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑦 ) = +∞ ) → +∞ ∈ ℝ* ) |
| 84 |
38
|
elrnmpt |
⊢ ( +∞ ∈ ℝ* → ( +∞ ∈ ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑥 ) ) ) ↔ ∃ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) +∞ = ( 𝐺 Σg ( 𝐹 ↾ 𝑥 ) ) ) ) |
| 85 |
83 84
|
syl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑦 ) = +∞ ) → ( +∞ ∈ ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑥 ) ) ) ↔ ∃ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) +∞ = ( 𝐺 Σg ( 𝐹 ↾ 𝑥 ) ) ) ) |
| 86 |
81 85
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑦 ) = +∞ ) → +∞ ∈ ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑥 ) ) ) ) |
| 87 |
|
supxrpnf |
⊢ ( ( ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑥 ) ) ) ⊆ ℝ* ∧ +∞ ∈ ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑥 ) ) ) ) → sup ( ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑥 ) ) ) , ℝ* , < ) = +∞ ) |
| 88 |
40 86 87
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑦 ) = +∞ ) → sup ( ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑥 ) ) ) , ℝ* , < ) = +∞ ) |
| 89 |
88
|
3exp |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝑋 → ( ( 𝐹 ‘ 𝑦 ) = +∞ → sup ( ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑥 ) ) ) , ℝ* , < ) = +∞ ) ) ) |
| 90 |
89
|
adantr |
⊢ ( ( 𝜑 ∧ +∞ ∈ ran 𝐹 ) → ( 𝑦 ∈ 𝑋 → ( ( 𝐹 ‘ 𝑦 ) = +∞ → sup ( ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑥 ) ) ) , ℝ* , < ) = +∞ ) ) ) |
| 91 |
90
|
rexlimdv |
⊢ ( ( 𝜑 ∧ +∞ ∈ ran 𝐹 ) → ( ∃ 𝑦 ∈ 𝑋 ( 𝐹 ‘ 𝑦 ) = +∞ → sup ( ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑥 ) ) ) , ℝ* , < ) = +∞ ) ) |
| 92 |
20 91
|
mpd |
⊢ ( ( 𝜑 ∧ +∞ ∈ ran 𝐹 ) → sup ( ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑥 ) ) ) , ℝ* , < ) = +∞ ) |
| 93 |
15 92
|
eqtr4d |
⊢ ( ( 𝜑 ∧ +∞ ∈ ran 𝐹 ) → ( Σ^ ‘ 𝐹 ) = sup ( ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑥 ) ) ) , ℝ* , < ) ) |
| 94 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) → 𝑋 ∈ 𝑉 ) |
| 95 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) → 𝐹 : 𝑋 ⟶ ( 0 [,] +∞ ) ) |
| 96 |
|
simpr |
⊢ ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) → ¬ +∞ ∈ ran 𝐹 ) |
| 97 |
95 96
|
fge0iccico |
⊢ ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) → 𝐹 : 𝑋 ⟶ ( 0 [,) +∞ ) ) |
| 98 |
94 97
|
sge0reval |
⊢ ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) → ( Σ^ ‘ 𝐹 ) = sup ( ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ) , ℝ* , < ) ) |
| 99 |
23 27
|
feqresmpt |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) → ( 𝐹 ↾ 𝑥 ) = ( 𝑦 ∈ 𝑥 ↦ ( 𝐹 ‘ 𝑦 ) ) ) |
| 100 |
99
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) → ( 𝐹 ↾ 𝑥 ) = ( 𝑦 ∈ 𝑥 ↦ ( 𝐹 ‘ 𝑦 ) ) ) |
| 101 |
100
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) → ( 𝐺 Σg ( 𝐹 ↾ 𝑥 ) ) = ( 𝐺 Σg ( 𝑦 ∈ 𝑥 ↦ ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 102 |
1
|
fveq2i |
⊢ ( +g ‘ 𝐺 ) = ( +g ‘ ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ) |
| 103 |
|
eqid |
⊢ ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) = ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) |
| 104 |
|
xrsadd |
⊢ +𝑒 = ( +g ‘ ℝ*𝑠 ) |
| 105 |
103 104
|
ressplusg |
⊢ ( ( 0 [,] +∞ ) ∈ V → +𝑒 = ( +g ‘ ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ) ) |
| 106 |
68 105
|
ax-mp |
⊢ +𝑒 = ( +g ‘ ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ) |
| 107 |
106
|
eqcomi |
⊢ ( +g ‘ ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ) = +𝑒 |
| 108 |
102 107
|
eqtr2i |
⊢ +𝑒 = ( +g ‘ 𝐺 ) |
| 109 |
1
|
oveq1i |
⊢ ( 𝐺 ↾s ( 0 [,) +∞ ) ) = ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ↾s ( 0 [,) +∞ ) ) |
| 110 |
|
icossicc |
⊢ ( 0 [,) +∞ ) ⊆ ( 0 [,] +∞ ) |
| 111 |
68 110
|
pm3.2i |
⊢ ( ( 0 [,] +∞ ) ∈ V ∧ ( 0 [,) +∞ ) ⊆ ( 0 [,] +∞ ) ) |
| 112 |
|
ressabs |
⊢ ( ( ( 0 [,] +∞ ) ∈ V ∧ ( 0 [,) +∞ ) ⊆ ( 0 [,] +∞ ) ) → ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ↾s ( 0 [,) +∞ ) ) = ( ℝ*𝑠 ↾s ( 0 [,) +∞ ) ) ) |
| 113 |
111 112
|
ax-mp |
⊢ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ↾s ( 0 [,) +∞ ) ) = ( ℝ*𝑠 ↾s ( 0 [,) +∞ ) ) |
| 114 |
109 113
|
eqtr2i |
⊢ ( ℝ*𝑠 ↾s ( 0 [,) +∞ ) ) = ( 𝐺 ↾s ( 0 [,) +∞ ) ) |
| 115 |
58
|
elexi |
⊢ 𝐺 ∈ V |
| 116 |
115
|
a1i |
⊢ ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) → 𝐺 ∈ V ) |
| 117 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) → 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) |
| 118 |
110
|
a1i |
⊢ ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) → ( 0 [,) +∞ ) ⊆ ( 0 [,] +∞ ) ) |
| 119 |
|
0xr |
⊢ 0 ∈ ℝ* |
| 120 |
119
|
a1i |
⊢ ( ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) ∧ 𝑦 ∈ 𝑥 ) → 0 ∈ ℝ* ) |
| 121 |
82
|
a1i |
⊢ ( ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) ∧ 𝑦 ∈ 𝑥 ) → +∞ ∈ ℝ* ) |
| 122 |
95
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) ∧ 𝑦 ∈ 𝑥 ) → 𝐹 : 𝑋 ⟶ ( 0 [,] +∞ ) ) |
| 123 |
26
|
sselda |
⊢ ( ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ∧ 𝑦 ∈ 𝑥 ) → 𝑦 ∈ 𝑋 ) |
| 124 |
123
|
adantll |
⊢ ( ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) ∧ 𝑦 ∈ 𝑥 ) → 𝑦 ∈ 𝑋 ) |
| 125 |
122 124
|
ffvelcdmd |
⊢ ( ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) ∧ 𝑦 ∈ 𝑥 ) → ( 𝐹 ‘ 𝑦 ) ∈ ( 0 [,] +∞ ) ) |
| 126 |
21 125
|
sselid |
⊢ ( ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) ∧ 𝑦 ∈ 𝑥 ) → ( 𝐹 ‘ 𝑦 ) ∈ ℝ* ) |
| 127 |
|
iccgelb |
⊢ ( ( 0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ ( 𝐹 ‘ 𝑦 ) ∈ ( 0 [,] +∞ ) ) → 0 ≤ ( 𝐹 ‘ 𝑦 ) ) |
| 128 |
120 121 125 127
|
syl3anc |
⊢ ( ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) ∧ 𝑦 ∈ 𝑥 ) → 0 ≤ ( 𝐹 ‘ 𝑦 ) ) |
| 129 |
|
id |
⊢ ( ( 𝐹 ‘ 𝑦 ) = +∞ → ( 𝐹 ‘ 𝑦 ) = +∞ ) |
| 130 |
129
|
eqcomd |
⊢ ( ( 𝐹 ‘ 𝑦 ) = +∞ → +∞ = ( 𝐹 ‘ 𝑦 ) ) |
| 131 |
130
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝐹 ‘ 𝑦 ) = +∞ ) → +∞ = ( 𝐹 ‘ 𝑦 ) ) |
| 132 |
3
|
ffund |
⊢ ( 𝜑 → Fun 𝐹 ) |
| 133 |
132
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) ∧ 𝑦 ∈ 𝑥 ) → Fun 𝐹 ) |
| 134 |
22 123
|
sylan |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) ∧ 𝑦 ∈ 𝑥 ) → 𝑦 ∈ 𝑋 ) |
| 135 |
3
|
fdmd |
⊢ ( 𝜑 → dom 𝐹 = 𝑋 ) |
| 136 |
135
|
eqcomd |
⊢ ( 𝜑 → 𝑋 = dom 𝐹 ) |
| 137 |
136
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) ∧ 𝑦 ∈ 𝑥 ) → 𝑋 = dom 𝐹 ) |
| 138 |
134 137
|
eleqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) ∧ 𝑦 ∈ 𝑥 ) → 𝑦 ∈ dom 𝐹 ) |
| 139 |
|
fvelrn |
⊢ ( ( Fun 𝐹 ∧ 𝑦 ∈ dom 𝐹 ) → ( 𝐹 ‘ 𝑦 ) ∈ ran 𝐹 ) |
| 140 |
133 138 139
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) ∧ 𝑦 ∈ 𝑥 ) → ( 𝐹 ‘ 𝑦 ) ∈ ran 𝐹 ) |
| 141 |
140
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝐹 ‘ 𝑦 ) = +∞ ) → ( 𝐹 ‘ 𝑦 ) ∈ ran 𝐹 ) |
| 142 |
131 141
|
eqeltrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝐹 ‘ 𝑦 ) = +∞ ) → +∞ ∈ ran 𝐹 ) |
| 143 |
142
|
adantl3r |
⊢ ( ( ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝐹 ‘ 𝑦 ) = +∞ ) → +∞ ∈ ran 𝐹 ) |
| 144 |
96
|
ad3antrrr |
⊢ ( ( ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝐹 ‘ 𝑦 ) = +∞ ) → ¬ +∞ ∈ ran 𝐹 ) |
| 145 |
143 144
|
pm2.65da |
⊢ ( ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) ∧ 𝑦 ∈ 𝑥 ) → ¬ ( 𝐹 ‘ 𝑦 ) = +∞ ) |
| 146 |
145
|
neqned |
⊢ ( ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) ∧ 𝑦 ∈ 𝑥 ) → ( 𝐹 ‘ 𝑦 ) ≠ +∞ ) |
| 147 |
|
ge0xrre |
⊢ ( ( ( 𝐹 ‘ 𝑦 ) ∈ ( 0 [,] +∞ ) ∧ ( 𝐹 ‘ 𝑦 ) ≠ +∞ ) → ( 𝐹 ‘ 𝑦 ) ∈ ℝ ) |
| 148 |
125 146 147
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) ∧ 𝑦 ∈ 𝑥 ) → ( 𝐹 ‘ 𝑦 ) ∈ ℝ ) |
| 149 |
148
|
ltpnfd |
⊢ ( ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) ∧ 𝑦 ∈ 𝑥 ) → ( 𝐹 ‘ 𝑦 ) < +∞ ) |
| 150 |
120 121 126 128 149
|
elicod |
⊢ ( ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) ∧ 𝑦 ∈ 𝑥 ) → ( 𝐹 ‘ 𝑦 ) ∈ ( 0 [,) +∞ ) ) |
| 151 |
|
eqid |
⊢ ( 𝑦 ∈ 𝑥 ↦ ( 𝐹 ‘ 𝑦 ) ) = ( 𝑦 ∈ 𝑥 ↦ ( 𝐹 ‘ 𝑦 ) ) |
| 152 |
150 151
|
fmptd |
⊢ ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) → ( 𝑦 ∈ 𝑥 ↦ ( 𝐹 ‘ 𝑦 ) ) : 𝑥 ⟶ ( 0 [,) +∞ ) ) |
| 153 |
|
0e0icopnf |
⊢ 0 ∈ ( 0 [,) +∞ ) |
| 154 |
153
|
a1i |
⊢ ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) → 0 ∈ ( 0 [,) +∞ ) ) |
| 155 |
|
eliccxr |
⊢ ( 𝑦 ∈ ( 0 [,] +∞ ) → 𝑦 ∈ ℝ* ) |
| 156 |
|
xaddlid |
⊢ ( 𝑦 ∈ ℝ* → ( 0 +𝑒 𝑦 ) = 𝑦 ) |
| 157 |
|
xaddrid |
⊢ ( 𝑦 ∈ ℝ* → ( 𝑦 +𝑒 0 ) = 𝑦 ) |
| 158 |
156 157
|
jca |
⊢ ( 𝑦 ∈ ℝ* → ( ( 0 +𝑒 𝑦 ) = 𝑦 ∧ ( 𝑦 +𝑒 0 ) = 𝑦 ) ) |
| 159 |
155 158
|
syl |
⊢ ( 𝑦 ∈ ( 0 [,] +∞ ) → ( ( 0 +𝑒 𝑦 ) = 𝑦 ∧ ( 𝑦 +𝑒 0 ) = 𝑦 ) ) |
| 160 |
159
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) ∧ 𝑦 ∈ ( 0 [,] +∞ ) ) → ( ( 0 +𝑒 𝑦 ) = 𝑦 ∧ ( 𝑦 +𝑒 0 ) = 𝑦 ) ) |
| 161 |
72 108 114 116 117 118 152 154 160
|
gsumress |
⊢ ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) → ( 𝐺 Σg ( 𝑦 ∈ 𝑥 ↦ ( 𝐹 ‘ 𝑦 ) ) ) = ( ( ℝ*𝑠 ↾s ( 0 [,) +∞ ) ) Σg ( 𝑦 ∈ 𝑥 ↦ ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 162 |
|
rege0subm |
⊢ ( 0 [,) +∞ ) ∈ ( SubMnd ‘ ℂfld ) |
| 163 |
162
|
a1i |
⊢ ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) → ( 0 [,) +∞ ) ∈ ( SubMnd ‘ ℂfld ) ) |
| 164 |
|
eqid |
⊢ ( ℂfld ↾s ( 0 [,) +∞ ) ) = ( ℂfld ↾s ( 0 [,) +∞ ) ) |
| 165 |
117 163 152 164
|
gsumsubm |
⊢ ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) → ( ℂfld Σg ( 𝑦 ∈ 𝑥 ↦ ( 𝐹 ‘ 𝑦 ) ) ) = ( ( ℂfld ↾s ( 0 [,) +∞ ) ) Σg ( 𝑦 ∈ 𝑥 ↦ ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 166 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) → ( ( ℂfld ↾s ( 0 [,) +∞ ) ) Σg ( 𝑦 ∈ 𝑥 ↦ ( 𝐹 ‘ 𝑦 ) ) ) = ( ( ℂfld ↾s ( 0 [,) +∞ ) ) Σg ( 𝑦 ∈ 𝑥 ↦ ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 167 |
|
vex |
⊢ 𝑥 ∈ V |
| 168 |
167
|
mptex |
⊢ ( 𝑦 ∈ 𝑥 ↦ ( 𝐹 ‘ 𝑦 ) ) ∈ V |
| 169 |
168
|
a1i |
⊢ ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) → ( 𝑦 ∈ 𝑥 ↦ ( 𝐹 ‘ 𝑦 ) ) ∈ V ) |
| 170 |
|
ovexd |
⊢ ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) → ( ℂfld ↾s ( 0 [,) +∞ ) ) ∈ V ) |
| 171 |
|
ovexd |
⊢ ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) → ( ℝ*𝑠 ↾s ( 0 [,) +∞ ) ) ∈ V ) |
| 172 |
|
rge0ssre |
⊢ ( 0 [,) +∞ ) ⊆ ℝ |
| 173 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
| 174 |
172 173
|
sstri |
⊢ ( 0 [,) +∞ ) ⊆ ℂ |
| 175 |
|
cnfldbas |
⊢ ℂ = ( Base ‘ ℂfld ) |
| 176 |
164 175
|
ressbas2 |
⊢ ( ( 0 [,) +∞ ) ⊆ ℂ → ( 0 [,) +∞ ) = ( Base ‘ ( ℂfld ↾s ( 0 [,) +∞ ) ) ) ) |
| 177 |
174 176
|
ax-mp |
⊢ ( 0 [,) +∞ ) = ( Base ‘ ( ℂfld ↾s ( 0 [,) +∞ ) ) ) |
| 178 |
177
|
eqcomi |
⊢ ( Base ‘ ( ℂfld ↾s ( 0 [,) +∞ ) ) ) = ( 0 [,) +∞ ) |
| 179 |
110 21
|
sstri |
⊢ ( 0 [,) +∞ ) ⊆ ℝ* |
| 180 |
|
eqid |
⊢ ( ℝ*𝑠 ↾s ( 0 [,) +∞ ) ) = ( ℝ*𝑠 ↾s ( 0 [,) +∞ ) ) |
| 181 |
180 69
|
ressbas2 |
⊢ ( ( 0 [,) +∞ ) ⊆ ℝ* → ( 0 [,) +∞ ) = ( Base ‘ ( ℝ*𝑠 ↾s ( 0 [,) +∞ ) ) ) ) |
| 182 |
179 181
|
ax-mp |
⊢ ( 0 [,) +∞ ) = ( Base ‘ ( ℝ*𝑠 ↾s ( 0 [,) +∞ ) ) ) |
| 183 |
178 182
|
eqtri |
⊢ ( Base ‘ ( ℂfld ↾s ( 0 [,) +∞ ) ) ) = ( Base ‘ ( ℝ*𝑠 ↾s ( 0 [,) +∞ ) ) ) |
| 184 |
183
|
a1i |
⊢ ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) → ( Base ‘ ( ℂfld ↾s ( 0 [,) +∞ ) ) ) = ( Base ‘ ( ℝ*𝑠 ↾s ( 0 [,) +∞ ) ) ) ) |
| 185 |
|
rge0srg |
⊢ ( ℂfld ↾s ( 0 [,) +∞ ) ) ∈ SRing |
| 186 |
185
|
a1i |
⊢ ( ( 𝑠 ∈ ( Base ‘ ( ℂfld ↾s ( 0 [,) +∞ ) ) ) ∧ 𝑡 ∈ ( Base ‘ ( ℂfld ↾s ( 0 [,) +∞ ) ) ) ) → ( ℂfld ↾s ( 0 [,) +∞ ) ) ∈ SRing ) |
| 187 |
|
simpl |
⊢ ( ( 𝑠 ∈ ( Base ‘ ( ℂfld ↾s ( 0 [,) +∞ ) ) ) ∧ 𝑡 ∈ ( Base ‘ ( ℂfld ↾s ( 0 [,) +∞ ) ) ) ) → 𝑠 ∈ ( Base ‘ ( ℂfld ↾s ( 0 [,) +∞ ) ) ) ) |
| 188 |
|
simpr |
⊢ ( ( 𝑠 ∈ ( Base ‘ ( ℂfld ↾s ( 0 [,) +∞ ) ) ) ∧ 𝑡 ∈ ( Base ‘ ( ℂfld ↾s ( 0 [,) +∞ ) ) ) ) → 𝑡 ∈ ( Base ‘ ( ℂfld ↾s ( 0 [,) +∞ ) ) ) ) |
| 189 |
|
eqid |
⊢ ( Base ‘ ( ℂfld ↾s ( 0 [,) +∞ ) ) ) = ( Base ‘ ( ℂfld ↾s ( 0 [,) +∞ ) ) ) |
| 190 |
|
eqid |
⊢ ( +g ‘ ( ℂfld ↾s ( 0 [,) +∞ ) ) ) = ( +g ‘ ( ℂfld ↾s ( 0 [,) +∞ ) ) ) |
| 191 |
189 190
|
srgacl |
⊢ ( ( ( ℂfld ↾s ( 0 [,) +∞ ) ) ∈ SRing ∧ 𝑠 ∈ ( Base ‘ ( ℂfld ↾s ( 0 [,) +∞ ) ) ) ∧ 𝑡 ∈ ( Base ‘ ( ℂfld ↾s ( 0 [,) +∞ ) ) ) ) → ( 𝑠 ( +g ‘ ( ℂfld ↾s ( 0 [,) +∞ ) ) ) 𝑡 ) ∈ ( Base ‘ ( ℂfld ↾s ( 0 [,) +∞ ) ) ) ) |
| 192 |
186 187 188 191
|
syl3anc |
⊢ ( ( 𝑠 ∈ ( Base ‘ ( ℂfld ↾s ( 0 [,) +∞ ) ) ) ∧ 𝑡 ∈ ( Base ‘ ( ℂfld ↾s ( 0 [,) +∞ ) ) ) ) → ( 𝑠 ( +g ‘ ( ℂfld ↾s ( 0 [,) +∞ ) ) ) 𝑡 ) ∈ ( Base ‘ ( ℂfld ↾s ( 0 [,) +∞ ) ) ) ) |
| 193 |
192
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) ∧ ( 𝑠 ∈ ( Base ‘ ( ℂfld ↾s ( 0 [,) +∞ ) ) ) ∧ 𝑡 ∈ ( Base ‘ ( ℂfld ↾s ( 0 [,) +∞ ) ) ) ) ) → ( 𝑠 ( +g ‘ ( ℂfld ↾s ( 0 [,) +∞ ) ) ) 𝑡 ) ∈ ( Base ‘ ( ℂfld ↾s ( 0 [,) +∞ ) ) ) ) |
| 194 |
172
|
a1i |
⊢ ( 𝑠 ∈ ( Base ‘ ( ℂfld ↾s ( 0 [,) +∞ ) ) ) → ( 0 [,) +∞ ) ⊆ ℝ ) |
| 195 |
|
id |
⊢ ( 𝑠 ∈ ( Base ‘ ( ℂfld ↾s ( 0 [,) +∞ ) ) ) → 𝑠 ∈ ( Base ‘ ( ℂfld ↾s ( 0 [,) +∞ ) ) ) ) |
| 196 |
195 178
|
eleqtrdi |
⊢ ( 𝑠 ∈ ( Base ‘ ( ℂfld ↾s ( 0 [,) +∞ ) ) ) → 𝑠 ∈ ( 0 [,) +∞ ) ) |
| 197 |
194 196
|
sseldd |
⊢ ( 𝑠 ∈ ( Base ‘ ( ℂfld ↾s ( 0 [,) +∞ ) ) ) → 𝑠 ∈ ℝ ) |
| 198 |
197
|
adantr |
⊢ ( ( 𝑠 ∈ ( Base ‘ ( ℂfld ↾s ( 0 [,) +∞ ) ) ) ∧ 𝑡 ∈ ( Base ‘ ( ℂfld ↾s ( 0 [,) +∞ ) ) ) ) → 𝑠 ∈ ℝ ) |
| 199 |
172
|
a1i |
⊢ ( 𝑡 ∈ ( Base ‘ ( ℂfld ↾s ( 0 [,) +∞ ) ) ) → ( 0 [,) +∞ ) ⊆ ℝ ) |
| 200 |
|
id |
⊢ ( 𝑡 ∈ ( Base ‘ ( ℂfld ↾s ( 0 [,) +∞ ) ) ) → 𝑡 ∈ ( Base ‘ ( ℂfld ↾s ( 0 [,) +∞ ) ) ) ) |
| 201 |
200 178
|
eleqtrdi |
⊢ ( 𝑡 ∈ ( Base ‘ ( ℂfld ↾s ( 0 [,) +∞ ) ) ) → 𝑡 ∈ ( 0 [,) +∞ ) ) |
| 202 |
199 201
|
sseldd |
⊢ ( 𝑡 ∈ ( Base ‘ ( ℂfld ↾s ( 0 [,) +∞ ) ) ) → 𝑡 ∈ ℝ ) |
| 203 |
202
|
adantl |
⊢ ( ( 𝑠 ∈ ( Base ‘ ( ℂfld ↾s ( 0 [,) +∞ ) ) ) ∧ 𝑡 ∈ ( Base ‘ ( ℂfld ↾s ( 0 [,) +∞ ) ) ) ) → 𝑡 ∈ ℝ ) |
| 204 |
|
rexadd |
⊢ ( ( 𝑠 ∈ ℝ ∧ 𝑡 ∈ ℝ ) → ( 𝑠 +𝑒 𝑡 ) = ( 𝑠 + 𝑡 ) ) |
| 205 |
204
|
eqcomd |
⊢ ( ( 𝑠 ∈ ℝ ∧ 𝑡 ∈ ℝ ) → ( 𝑠 + 𝑡 ) = ( 𝑠 +𝑒 𝑡 ) ) |
| 206 |
162
|
elexi |
⊢ ( 0 [,) +∞ ) ∈ V |
| 207 |
|
cnfldadd |
⊢ + = ( +g ‘ ℂfld ) |
| 208 |
164 207
|
ressplusg |
⊢ ( ( 0 [,) +∞ ) ∈ V → + = ( +g ‘ ( ℂfld ↾s ( 0 [,) +∞ ) ) ) ) |
| 209 |
206 208
|
ax-mp |
⊢ + = ( +g ‘ ( ℂfld ↾s ( 0 [,) +∞ ) ) ) |
| 210 |
209 207
|
eqtr3i |
⊢ ( +g ‘ ( ℂfld ↾s ( 0 [,) +∞ ) ) ) = ( +g ‘ ℂfld ) |
| 211 |
210 207
|
eqtr4i |
⊢ ( +g ‘ ( ℂfld ↾s ( 0 [,) +∞ ) ) ) = + |
| 212 |
211
|
oveqi |
⊢ ( 𝑠 ( +g ‘ ( ℂfld ↾s ( 0 [,) +∞ ) ) ) 𝑡 ) = ( 𝑠 + 𝑡 ) |
| 213 |
212
|
a1i |
⊢ ( ( 𝑠 ∈ ℝ ∧ 𝑡 ∈ ℝ ) → ( 𝑠 ( +g ‘ ( ℂfld ↾s ( 0 [,) +∞ ) ) ) 𝑡 ) = ( 𝑠 + 𝑡 ) ) |
| 214 |
180 104
|
ressplusg |
⊢ ( ( 0 [,) +∞ ) ∈ V → +𝑒 = ( +g ‘ ( ℝ*𝑠 ↾s ( 0 [,) +∞ ) ) ) ) |
| 215 |
206 214
|
ax-mp |
⊢ +𝑒 = ( +g ‘ ( ℝ*𝑠 ↾s ( 0 [,) +∞ ) ) ) |
| 216 |
215
|
eqcomi |
⊢ ( +g ‘ ( ℝ*𝑠 ↾s ( 0 [,) +∞ ) ) ) = +𝑒 |
| 217 |
216
|
oveqi |
⊢ ( 𝑠 ( +g ‘ ( ℝ*𝑠 ↾s ( 0 [,) +∞ ) ) ) 𝑡 ) = ( 𝑠 +𝑒 𝑡 ) |
| 218 |
217
|
a1i |
⊢ ( ( 𝑠 ∈ ℝ ∧ 𝑡 ∈ ℝ ) → ( 𝑠 ( +g ‘ ( ℝ*𝑠 ↾s ( 0 [,) +∞ ) ) ) 𝑡 ) = ( 𝑠 +𝑒 𝑡 ) ) |
| 219 |
205 213 218
|
3eqtr4d |
⊢ ( ( 𝑠 ∈ ℝ ∧ 𝑡 ∈ ℝ ) → ( 𝑠 ( +g ‘ ( ℂfld ↾s ( 0 [,) +∞ ) ) ) 𝑡 ) = ( 𝑠 ( +g ‘ ( ℝ*𝑠 ↾s ( 0 [,) +∞ ) ) ) 𝑡 ) ) |
| 220 |
198 203 219
|
syl2anc |
⊢ ( ( 𝑠 ∈ ( Base ‘ ( ℂfld ↾s ( 0 [,) +∞ ) ) ) ∧ 𝑡 ∈ ( Base ‘ ( ℂfld ↾s ( 0 [,) +∞ ) ) ) ) → ( 𝑠 ( +g ‘ ( ℂfld ↾s ( 0 [,) +∞ ) ) ) 𝑡 ) = ( 𝑠 ( +g ‘ ( ℝ*𝑠 ↾s ( 0 [,) +∞ ) ) ) 𝑡 ) ) |
| 221 |
220
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) ∧ ( 𝑠 ∈ ( Base ‘ ( ℂfld ↾s ( 0 [,) +∞ ) ) ) ∧ 𝑡 ∈ ( Base ‘ ( ℂfld ↾s ( 0 [,) +∞ ) ) ) ) ) → ( 𝑠 ( +g ‘ ( ℂfld ↾s ( 0 [,) +∞ ) ) ) 𝑡 ) = ( 𝑠 ( +g ‘ ( ℝ*𝑠 ↾s ( 0 [,) +∞ ) ) ) 𝑡 ) ) |
| 222 |
|
funmpt |
⊢ Fun ( 𝑦 ∈ 𝑥 ↦ ( 𝐹 ‘ 𝑦 ) ) |
| 223 |
222
|
a1i |
⊢ ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) → Fun ( 𝑦 ∈ 𝑥 ↦ ( 𝐹 ‘ 𝑦 ) ) ) |
| 224 |
150 177
|
eleqtrdi |
⊢ ( ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) ∧ 𝑦 ∈ 𝑥 ) → ( 𝐹 ‘ 𝑦 ) ∈ ( Base ‘ ( ℂfld ↾s ( 0 [,) +∞ ) ) ) ) |
| 225 |
224
|
ralrimiva |
⊢ ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) → ∀ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ∈ ( Base ‘ ( ℂfld ↾s ( 0 [,) +∞ ) ) ) ) |
| 226 |
151
|
rnmptss |
⊢ ( ∀ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ∈ ( Base ‘ ( ℂfld ↾s ( 0 [,) +∞ ) ) ) → ran ( 𝑦 ∈ 𝑥 ↦ ( 𝐹 ‘ 𝑦 ) ) ⊆ ( Base ‘ ( ℂfld ↾s ( 0 [,) +∞ ) ) ) ) |
| 227 |
225 226
|
syl |
⊢ ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) → ran ( 𝑦 ∈ 𝑥 ↦ ( 𝐹 ‘ 𝑦 ) ) ⊆ ( Base ‘ ( ℂfld ↾s ( 0 [,) +∞ ) ) ) ) |
| 228 |
169 170 171 184 193 221 223 227
|
gsumpropd2 |
⊢ ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) → ( ( ℂfld ↾s ( 0 [,) +∞ ) ) Σg ( 𝑦 ∈ 𝑥 ↦ ( 𝐹 ‘ 𝑦 ) ) ) = ( ( ℝ*𝑠 ↾s ( 0 [,) +∞ ) ) Σg ( 𝑦 ∈ 𝑥 ↦ ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 229 |
165 166 228
|
3eqtrd |
⊢ ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) → ( ℂfld Σg ( 𝑦 ∈ 𝑥 ↦ ( 𝐹 ‘ 𝑦 ) ) ) = ( ( ℝ*𝑠 ↾s ( 0 [,) +∞ ) ) Σg ( 𝑦 ∈ 𝑥 ↦ ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 230 |
30
|
adantl |
⊢ ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) → 𝑥 ∈ Fin ) |
| 231 |
148
|
recnd |
⊢ ( ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) ∧ 𝑦 ∈ 𝑥 ) → ( 𝐹 ‘ 𝑦 ) ∈ ℂ ) |
| 232 |
230 231
|
gsumfsum |
⊢ ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) → ( ℂfld Σg ( 𝑦 ∈ 𝑥 ↦ ( 𝐹 ‘ 𝑦 ) ) ) = Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ) |
| 233 |
229 232
|
eqtr3d |
⊢ ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) → ( ( ℝ*𝑠 ↾s ( 0 [,) +∞ ) ) Σg ( 𝑦 ∈ 𝑥 ↦ ( 𝐹 ‘ 𝑦 ) ) ) = Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ) |
| 234 |
101 161 233
|
3eqtrrd |
⊢ ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) → Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) = ( 𝐺 Σg ( 𝐹 ↾ 𝑥 ) ) ) |
| 235 |
234
|
mpteq2dva |
⊢ ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) → ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ) = ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑥 ) ) ) ) |
| 236 |
235
|
rneqd |
⊢ ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) → ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ) = ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑥 ) ) ) ) |
| 237 |
236
|
supeq1d |
⊢ ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) → sup ( ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ) , ℝ* , < ) = sup ( ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑥 ) ) ) , ℝ* , < ) ) |
| 238 |
98 237
|
eqtrd |
⊢ ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) → ( Σ^ ‘ 𝐹 ) = sup ( ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑥 ) ) ) , ℝ* , < ) ) |
| 239 |
93 238
|
pm2.61dan |
⊢ ( 𝜑 → ( Σ^ ‘ 𝐹 ) = sup ( ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑥 ) ) ) , ℝ* , < ) ) |
| 240 |
1 2 3 4
|
xrge0tsms |
⊢ ( 𝜑 → ( 𝐺 tsums 𝐹 ) = { sup ( ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑥 ) ) ) , ℝ* , < ) } ) |
| 241 |
239 240
|
eleq12d |
⊢ ( 𝜑 → ( ( Σ^ ‘ 𝐹 ) ∈ ( 𝐺 tsums 𝐹 ) ↔ sup ( ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑥 ) ) ) , ℝ* , < ) ∈ { sup ( ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑥 ) ) ) , ℝ* , < ) } ) ) |
| 242 |
11 241
|
mpbird |
⊢ ( 𝜑 → ( Σ^ ‘ 𝐹 ) ∈ ( 𝐺 tsums 𝐹 ) ) |