Step |
Hyp |
Ref |
Expression |
1 |
|
sge0tsms.g |
⊢ 𝐺 = ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) |
2 |
|
sge0tsms.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
3 |
|
sge0tsms.f |
⊢ ( 𝜑 → 𝐹 : 𝑋 ⟶ ( 0 [,] +∞ ) ) |
4 |
|
eqid |
⊢ sup ( ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑥 ) ) ) , ℝ* , < ) = sup ( ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑥 ) ) ) , ℝ* , < ) |
5 |
4
|
a1i |
⊢ ( 𝜑 → sup ( ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑥 ) ) ) , ℝ* , < ) = sup ( ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑥 ) ) ) , ℝ* , < ) ) |
6 |
|
xrltso |
⊢ < Or ℝ* |
7 |
6
|
supex |
⊢ sup ( ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑥 ) ) ) , ℝ* , < ) ∈ V |
8 |
7
|
a1i |
⊢ ( 𝜑 → sup ( ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑥 ) ) ) , ℝ* , < ) ∈ V ) |
9 |
|
elsng |
⊢ ( sup ( ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑥 ) ) ) , ℝ* , < ) ∈ V → ( sup ( ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑥 ) ) ) , ℝ* , < ) ∈ { sup ( ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑥 ) ) ) , ℝ* , < ) } ↔ sup ( ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑥 ) ) ) , ℝ* , < ) = sup ( ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑥 ) ) ) , ℝ* , < ) ) ) |
10 |
8 9
|
syl |
⊢ ( 𝜑 → ( sup ( ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑥 ) ) ) , ℝ* , < ) ∈ { sup ( ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑥 ) ) ) , ℝ* , < ) } ↔ sup ( ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑥 ) ) ) , ℝ* , < ) = sup ( ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑥 ) ) ) , ℝ* , < ) ) ) |
11 |
5 10
|
mpbird |
⊢ ( 𝜑 → sup ( ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑥 ) ) ) , ℝ* , < ) ∈ { sup ( ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑥 ) ) ) , ℝ* , < ) } ) |
12 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ +∞ ∈ ran 𝐹 ) → 𝑋 ∈ 𝑉 ) |
13 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ +∞ ∈ ran 𝐹 ) → 𝐹 : 𝑋 ⟶ ( 0 [,] +∞ ) ) |
14 |
|
simpr |
⊢ ( ( 𝜑 ∧ +∞ ∈ ran 𝐹 ) → +∞ ∈ ran 𝐹 ) |
15 |
12 13 14
|
sge0pnfval |
⊢ ( ( 𝜑 ∧ +∞ ∈ ran 𝐹 ) → ( Σ^ ‘ 𝐹 ) = +∞ ) |
16 |
3
|
ffnd |
⊢ ( 𝜑 → 𝐹 Fn 𝑋 ) |
17 |
16
|
adantr |
⊢ ( ( 𝜑 ∧ +∞ ∈ ran 𝐹 ) → 𝐹 Fn 𝑋 ) |
18 |
|
fvelrnb |
⊢ ( 𝐹 Fn 𝑋 → ( +∞ ∈ ran 𝐹 ↔ ∃ 𝑦 ∈ 𝑋 ( 𝐹 ‘ 𝑦 ) = +∞ ) ) |
19 |
17 18
|
syl |
⊢ ( ( 𝜑 ∧ +∞ ∈ ran 𝐹 ) → ( +∞ ∈ ran 𝐹 ↔ ∃ 𝑦 ∈ 𝑋 ( 𝐹 ‘ 𝑦 ) = +∞ ) ) |
20 |
14 19
|
mpbid |
⊢ ( ( 𝜑 ∧ +∞ ∈ ran 𝐹 ) → ∃ 𝑦 ∈ 𝑋 ( 𝐹 ‘ 𝑦 ) = +∞ ) |
21 |
|
iccssxr |
⊢ ( 0 [,] +∞ ) ⊆ ℝ* |
22 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) → 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) |
23 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) → 𝐹 : 𝑋 ⟶ ( 0 [,] +∞ ) ) |
24 |
|
elinel1 |
⊢ ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) → 𝑥 ∈ 𝒫 𝑋 ) |
25 |
|
elpwi |
⊢ ( 𝑥 ∈ 𝒫 𝑋 → 𝑥 ⊆ 𝑋 ) |
26 |
24 25
|
syl |
⊢ ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) → 𝑥 ⊆ 𝑋 ) |
27 |
26
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) → 𝑥 ⊆ 𝑋 ) |
28 |
|
fssres |
⊢ ( ( 𝐹 : 𝑋 ⟶ ( 0 [,] +∞ ) ∧ 𝑥 ⊆ 𝑋 ) → ( 𝐹 ↾ 𝑥 ) : 𝑥 ⟶ ( 0 [,] +∞ ) ) |
29 |
23 27 28
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) → ( 𝐹 ↾ 𝑥 ) : 𝑥 ⟶ ( 0 [,] +∞ ) ) |
30 |
|
elinel2 |
⊢ ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) → 𝑥 ∈ Fin ) |
31 |
30
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) → 𝑥 ∈ Fin ) |
32 |
|
0red |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) → 0 ∈ ℝ ) |
33 |
29 31 32
|
fdmfifsupp |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) → ( 𝐹 ↾ 𝑥 ) finSupp 0 ) |
34 |
1 22 29 33
|
gsumge0cl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) → ( 𝐺 Σg ( 𝐹 ↾ 𝑥 ) ) ∈ ( 0 [,] +∞ ) ) |
35 |
21 34
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) → ( 𝐺 Σg ( 𝐹 ↾ 𝑥 ) ) ∈ ℝ* ) |
36 |
35
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ( 𝐺 Σg ( 𝐹 ↾ 𝑥 ) ) ∈ ℝ* ) |
37 |
36
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑦 ) = +∞ ) → ∀ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ( 𝐺 Σg ( 𝐹 ↾ 𝑥 ) ) ∈ ℝ* ) |
38 |
|
eqid |
⊢ ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑥 ) ) ) = ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑥 ) ) ) |
39 |
38
|
rnmptss |
⊢ ( ∀ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ( 𝐺 Σg ( 𝐹 ↾ 𝑥 ) ) ∈ ℝ* → ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑥 ) ) ) ⊆ ℝ* ) |
40 |
37 39
|
syl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑦 ) = +∞ ) → ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑥 ) ) ) ⊆ ℝ* ) |
41 |
|
snelpwi |
⊢ ( 𝑦 ∈ 𝑋 → { 𝑦 } ∈ 𝒫 𝑋 ) |
42 |
|
snfi |
⊢ { 𝑦 } ∈ Fin |
43 |
42
|
a1i |
⊢ ( 𝑦 ∈ 𝑋 → { 𝑦 } ∈ Fin ) |
44 |
41 43
|
elind |
⊢ ( 𝑦 ∈ 𝑋 → { 𝑦 } ∈ ( 𝒫 𝑋 ∩ Fin ) ) |
45 |
44
|
3ad2ant2 |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑦 ) = +∞ ) → { 𝑦 } ∈ ( 𝒫 𝑋 ∩ Fin ) ) |
46 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) → 𝐹 : 𝑋 ⟶ ( 0 [,] +∞ ) ) |
47 |
|
snssi |
⊢ ( 𝑦 ∈ 𝑋 → { 𝑦 } ⊆ 𝑋 ) |
48 |
47
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) → { 𝑦 } ⊆ 𝑋 ) |
49 |
46 48
|
fssresd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) → ( 𝐹 ↾ { 𝑦 } ) : { 𝑦 } ⟶ ( 0 [,] +∞ ) ) |
50 |
49
|
feqmptd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) → ( 𝐹 ↾ { 𝑦 } ) = ( 𝑥 ∈ { 𝑦 } ↦ ( ( 𝐹 ↾ { 𝑦 } ) ‘ 𝑥 ) ) ) |
51 |
|
fvres |
⊢ ( 𝑥 ∈ { 𝑦 } → ( ( 𝐹 ↾ { 𝑦 } ) ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) |
52 |
51
|
mpteq2ia |
⊢ ( 𝑥 ∈ { 𝑦 } ↦ ( ( 𝐹 ↾ { 𝑦 } ) ‘ 𝑥 ) ) = ( 𝑥 ∈ { 𝑦 } ↦ ( 𝐹 ‘ 𝑥 ) ) |
53 |
52
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) → ( 𝑥 ∈ { 𝑦 } ↦ ( ( 𝐹 ↾ { 𝑦 } ) ‘ 𝑥 ) ) = ( 𝑥 ∈ { 𝑦 } ↦ ( 𝐹 ‘ 𝑥 ) ) ) |
54 |
50 53
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) → ( 𝐹 ↾ { 𝑦 } ) = ( 𝑥 ∈ { 𝑦 } ↦ ( 𝐹 ‘ 𝑥 ) ) ) |
55 |
54
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) → ( 𝐺 Σg ( 𝐹 ↾ { 𝑦 } ) ) = ( 𝐺 Σg ( 𝑥 ∈ { 𝑦 } ↦ ( 𝐹 ‘ 𝑥 ) ) ) ) |
56 |
55
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑦 ) = +∞ ) → ( 𝐺 Σg ( 𝐹 ↾ { 𝑦 } ) ) = ( 𝐺 Σg ( 𝑥 ∈ { 𝑦 } ↦ ( 𝐹 ‘ 𝑥 ) ) ) ) |
57 |
|
xrge0cmn |
⊢ ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ∈ CMnd |
58 |
1 57
|
eqeltri |
⊢ 𝐺 ∈ CMnd |
59 |
|
cmnmnd |
⊢ ( 𝐺 ∈ CMnd → 𝐺 ∈ Mnd ) |
60 |
58 59
|
ax-mp |
⊢ 𝐺 ∈ Mnd |
61 |
60
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑦 ) = +∞ ) → 𝐺 ∈ Mnd ) |
62 |
|
simp2 |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑦 ) = +∞ ) → 𝑦 ∈ 𝑋 ) |
63 |
3
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) → ( 𝐹 ‘ 𝑦 ) ∈ ( 0 [,] +∞ ) ) |
64 |
63
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑦 ) = +∞ ) → ( 𝐹 ‘ 𝑦 ) ∈ ( 0 [,] +∞ ) ) |
65 |
|
df-ss |
⊢ ( ( 0 [,] +∞ ) ⊆ ℝ* ↔ ( ( 0 [,] +∞ ) ∩ ℝ* ) = ( 0 [,] +∞ ) ) |
66 |
21 65
|
mpbi |
⊢ ( ( 0 [,] +∞ ) ∩ ℝ* ) = ( 0 [,] +∞ ) |
67 |
66
|
eqcomi |
⊢ ( 0 [,] +∞ ) = ( ( 0 [,] +∞ ) ∩ ℝ* ) |
68 |
|
ovex |
⊢ ( 0 [,] +∞ ) ∈ V |
69 |
|
xrsbas |
⊢ ℝ* = ( Base ‘ ℝ*𝑠 ) |
70 |
1 69
|
ressbas |
⊢ ( ( 0 [,] +∞ ) ∈ V → ( ( 0 [,] +∞ ) ∩ ℝ* ) = ( Base ‘ 𝐺 ) ) |
71 |
68 70
|
ax-mp |
⊢ ( ( 0 [,] +∞ ) ∩ ℝ* ) = ( Base ‘ 𝐺 ) |
72 |
67 71
|
eqtri |
⊢ ( 0 [,] +∞ ) = ( Base ‘ 𝐺 ) |
73 |
|
fveq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) |
74 |
72 73
|
gsumsn |
⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑦 ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑦 ) ∈ ( 0 [,] +∞ ) ) → ( 𝐺 Σg ( 𝑥 ∈ { 𝑦 } ↦ ( 𝐹 ‘ 𝑥 ) ) ) = ( 𝐹 ‘ 𝑦 ) ) |
75 |
61 62 64 74
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑦 ) = +∞ ) → ( 𝐺 Σg ( 𝑥 ∈ { 𝑦 } ↦ ( 𝐹 ‘ 𝑥 ) ) ) = ( 𝐹 ‘ 𝑦 ) ) |
76 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑦 ) = +∞ ) → ( 𝐹 ‘ 𝑦 ) = +∞ ) |
77 |
56 75 76
|
3eqtrrd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑦 ) = +∞ ) → +∞ = ( 𝐺 Σg ( 𝐹 ↾ { 𝑦 } ) ) ) |
78 |
|
reseq2 |
⊢ ( 𝑥 = { 𝑦 } → ( 𝐹 ↾ 𝑥 ) = ( 𝐹 ↾ { 𝑦 } ) ) |
79 |
78
|
oveq2d |
⊢ ( 𝑥 = { 𝑦 } → ( 𝐺 Σg ( 𝐹 ↾ 𝑥 ) ) = ( 𝐺 Σg ( 𝐹 ↾ { 𝑦 } ) ) ) |
80 |
79
|
rspceeqv |
⊢ ( ( { 𝑦 } ∈ ( 𝒫 𝑋 ∩ Fin ) ∧ +∞ = ( 𝐺 Σg ( 𝐹 ↾ { 𝑦 } ) ) ) → ∃ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) +∞ = ( 𝐺 Σg ( 𝐹 ↾ 𝑥 ) ) ) |
81 |
45 77 80
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑦 ) = +∞ ) → ∃ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) +∞ = ( 𝐺 Σg ( 𝐹 ↾ 𝑥 ) ) ) |
82 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
83 |
82
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑦 ) = +∞ ) → +∞ ∈ ℝ* ) |
84 |
38
|
elrnmpt |
⊢ ( +∞ ∈ ℝ* → ( +∞ ∈ ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑥 ) ) ) ↔ ∃ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) +∞ = ( 𝐺 Σg ( 𝐹 ↾ 𝑥 ) ) ) ) |
85 |
83 84
|
syl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑦 ) = +∞ ) → ( +∞ ∈ ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑥 ) ) ) ↔ ∃ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) +∞ = ( 𝐺 Σg ( 𝐹 ↾ 𝑥 ) ) ) ) |
86 |
81 85
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑦 ) = +∞ ) → +∞ ∈ ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑥 ) ) ) ) |
87 |
|
supxrpnf |
⊢ ( ( ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑥 ) ) ) ⊆ ℝ* ∧ +∞ ∈ ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑥 ) ) ) ) → sup ( ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑥 ) ) ) , ℝ* , < ) = +∞ ) |
88 |
40 86 87
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑦 ) = +∞ ) → sup ( ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑥 ) ) ) , ℝ* , < ) = +∞ ) |
89 |
88
|
3exp |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝑋 → ( ( 𝐹 ‘ 𝑦 ) = +∞ → sup ( ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑥 ) ) ) , ℝ* , < ) = +∞ ) ) ) |
90 |
89
|
adantr |
⊢ ( ( 𝜑 ∧ +∞ ∈ ran 𝐹 ) → ( 𝑦 ∈ 𝑋 → ( ( 𝐹 ‘ 𝑦 ) = +∞ → sup ( ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑥 ) ) ) , ℝ* , < ) = +∞ ) ) ) |
91 |
90
|
rexlimdv |
⊢ ( ( 𝜑 ∧ +∞ ∈ ran 𝐹 ) → ( ∃ 𝑦 ∈ 𝑋 ( 𝐹 ‘ 𝑦 ) = +∞ → sup ( ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑥 ) ) ) , ℝ* , < ) = +∞ ) ) |
92 |
20 91
|
mpd |
⊢ ( ( 𝜑 ∧ +∞ ∈ ran 𝐹 ) → sup ( ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑥 ) ) ) , ℝ* , < ) = +∞ ) |
93 |
15 92
|
eqtr4d |
⊢ ( ( 𝜑 ∧ +∞ ∈ ran 𝐹 ) → ( Σ^ ‘ 𝐹 ) = sup ( ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑥 ) ) ) , ℝ* , < ) ) |
94 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) → 𝑋 ∈ 𝑉 ) |
95 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) → 𝐹 : 𝑋 ⟶ ( 0 [,] +∞ ) ) |
96 |
|
simpr |
⊢ ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) → ¬ +∞ ∈ ran 𝐹 ) |
97 |
95 96
|
fge0iccico |
⊢ ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) → 𝐹 : 𝑋 ⟶ ( 0 [,) +∞ ) ) |
98 |
94 97
|
sge0reval |
⊢ ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) → ( Σ^ ‘ 𝐹 ) = sup ( ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ) , ℝ* , < ) ) |
99 |
23 27
|
feqresmpt |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) → ( 𝐹 ↾ 𝑥 ) = ( 𝑦 ∈ 𝑥 ↦ ( 𝐹 ‘ 𝑦 ) ) ) |
100 |
99
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) → ( 𝐹 ↾ 𝑥 ) = ( 𝑦 ∈ 𝑥 ↦ ( 𝐹 ‘ 𝑦 ) ) ) |
101 |
100
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) → ( 𝐺 Σg ( 𝐹 ↾ 𝑥 ) ) = ( 𝐺 Σg ( 𝑦 ∈ 𝑥 ↦ ( 𝐹 ‘ 𝑦 ) ) ) ) |
102 |
1
|
fveq2i |
⊢ ( +g ‘ 𝐺 ) = ( +g ‘ ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ) |
103 |
|
eqid |
⊢ ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) = ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) |
104 |
|
xrsadd |
⊢ +𝑒 = ( +g ‘ ℝ*𝑠 ) |
105 |
103 104
|
ressplusg |
⊢ ( ( 0 [,] +∞ ) ∈ V → +𝑒 = ( +g ‘ ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ) ) |
106 |
68 105
|
ax-mp |
⊢ +𝑒 = ( +g ‘ ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ) |
107 |
106
|
eqcomi |
⊢ ( +g ‘ ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ) = +𝑒 |
108 |
102 107
|
eqtr2i |
⊢ +𝑒 = ( +g ‘ 𝐺 ) |
109 |
1
|
oveq1i |
⊢ ( 𝐺 ↾s ( 0 [,) +∞ ) ) = ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ↾s ( 0 [,) +∞ ) ) |
110 |
|
icossicc |
⊢ ( 0 [,) +∞ ) ⊆ ( 0 [,] +∞ ) |
111 |
68 110
|
pm3.2i |
⊢ ( ( 0 [,] +∞ ) ∈ V ∧ ( 0 [,) +∞ ) ⊆ ( 0 [,] +∞ ) ) |
112 |
|
ressabs |
⊢ ( ( ( 0 [,] +∞ ) ∈ V ∧ ( 0 [,) +∞ ) ⊆ ( 0 [,] +∞ ) ) → ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ↾s ( 0 [,) +∞ ) ) = ( ℝ*𝑠 ↾s ( 0 [,) +∞ ) ) ) |
113 |
111 112
|
ax-mp |
⊢ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ↾s ( 0 [,) +∞ ) ) = ( ℝ*𝑠 ↾s ( 0 [,) +∞ ) ) |
114 |
109 113
|
eqtr2i |
⊢ ( ℝ*𝑠 ↾s ( 0 [,) +∞ ) ) = ( 𝐺 ↾s ( 0 [,) +∞ ) ) |
115 |
58
|
elexi |
⊢ 𝐺 ∈ V |
116 |
115
|
a1i |
⊢ ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) → 𝐺 ∈ V ) |
117 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) → 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) |
118 |
110
|
a1i |
⊢ ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) → ( 0 [,) +∞ ) ⊆ ( 0 [,] +∞ ) ) |
119 |
|
0xr |
⊢ 0 ∈ ℝ* |
120 |
119
|
a1i |
⊢ ( ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) ∧ 𝑦 ∈ 𝑥 ) → 0 ∈ ℝ* ) |
121 |
82
|
a1i |
⊢ ( ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) ∧ 𝑦 ∈ 𝑥 ) → +∞ ∈ ℝ* ) |
122 |
95
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) ∧ 𝑦 ∈ 𝑥 ) → 𝐹 : 𝑋 ⟶ ( 0 [,] +∞ ) ) |
123 |
26
|
sselda |
⊢ ( ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ∧ 𝑦 ∈ 𝑥 ) → 𝑦 ∈ 𝑋 ) |
124 |
123
|
adantll |
⊢ ( ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) ∧ 𝑦 ∈ 𝑥 ) → 𝑦 ∈ 𝑋 ) |
125 |
122 124
|
ffvelrnd |
⊢ ( ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) ∧ 𝑦 ∈ 𝑥 ) → ( 𝐹 ‘ 𝑦 ) ∈ ( 0 [,] +∞ ) ) |
126 |
21 125
|
sselid |
⊢ ( ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) ∧ 𝑦 ∈ 𝑥 ) → ( 𝐹 ‘ 𝑦 ) ∈ ℝ* ) |
127 |
|
iccgelb |
⊢ ( ( 0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ ( 𝐹 ‘ 𝑦 ) ∈ ( 0 [,] +∞ ) ) → 0 ≤ ( 𝐹 ‘ 𝑦 ) ) |
128 |
120 121 125 127
|
syl3anc |
⊢ ( ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) ∧ 𝑦 ∈ 𝑥 ) → 0 ≤ ( 𝐹 ‘ 𝑦 ) ) |
129 |
|
id |
⊢ ( ( 𝐹 ‘ 𝑦 ) = +∞ → ( 𝐹 ‘ 𝑦 ) = +∞ ) |
130 |
129
|
eqcomd |
⊢ ( ( 𝐹 ‘ 𝑦 ) = +∞ → +∞ = ( 𝐹 ‘ 𝑦 ) ) |
131 |
130
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝐹 ‘ 𝑦 ) = +∞ ) → +∞ = ( 𝐹 ‘ 𝑦 ) ) |
132 |
3
|
ffund |
⊢ ( 𝜑 → Fun 𝐹 ) |
133 |
132
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) ∧ 𝑦 ∈ 𝑥 ) → Fun 𝐹 ) |
134 |
22 123
|
sylan |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) ∧ 𝑦 ∈ 𝑥 ) → 𝑦 ∈ 𝑋 ) |
135 |
3
|
fdmd |
⊢ ( 𝜑 → dom 𝐹 = 𝑋 ) |
136 |
135
|
eqcomd |
⊢ ( 𝜑 → 𝑋 = dom 𝐹 ) |
137 |
136
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) ∧ 𝑦 ∈ 𝑥 ) → 𝑋 = dom 𝐹 ) |
138 |
134 137
|
eleqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) ∧ 𝑦 ∈ 𝑥 ) → 𝑦 ∈ dom 𝐹 ) |
139 |
|
fvelrn |
⊢ ( ( Fun 𝐹 ∧ 𝑦 ∈ dom 𝐹 ) → ( 𝐹 ‘ 𝑦 ) ∈ ran 𝐹 ) |
140 |
133 138 139
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) ∧ 𝑦 ∈ 𝑥 ) → ( 𝐹 ‘ 𝑦 ) ∈ ran 𝐹 ) |
141 |
140
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝐹 ‘ 𝑦 ) = +∞ ) → ( 𝐹 ‘ 𝑦 ) ∈ ran 𝐹 ) |
142 |
131 141
|
eqeltrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝐹 ‘ 𝑦 ) = +∞ ) → +∞ ∈ ran 𝐹 ) |
143 |
142
|
adantl3r |
⊢ ( ( ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝐹 ‘ 𝑦 ) = +∞ ) → +∞ ∈ ran 𝐹 ) |
144 |
96
|
ad3antrrr |
⊢ ( ( ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝐹 ‘ 𝑦 ) = +∞ ) → ¬ +∞ ∈ ran 𝐹 ) |
145 |
143 144
|
pm2.65da |
⊢ ( ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) ∧ 𝑦 ∈ 𝑥 ) → ¬ ( 𝐹 ‘ 𝑦 ) = +∞ ) |
146 |
145
|
neqned |
⊢ ( ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) ∧ 𝑦 ∈ 𝑥 ) → ( 𝐹 ‘ 𝑦 ) ≠ +∞ ) |
147 |
|
ge0xrre |
⊢ ( ( ( 𝐹 ‘ 𝑦 ) ∈ ( 0 [,] +∞ ) ∧ ( 𝐹 ‘ 𝑦 ) ≠ +∞ ) → ( 𝐹 ‘ 𝑦 ) ∈ ℝ ) |
148 |
125 146 147
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) ∧ 𝑦 ∈ 𝑥 ) → ( 𝐹 ‘ 𝑦 ) ∈ ℝ ) |
149 |
148
|
ltpnfd |
⊢ ( ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) ∧ 𝑦 ∈ 𝑥 ) → ( 𝐹 ‘ 𝑦 ) < +∞ ) |
150 |
120 121 126 128 149
|
elicod |
⊢ ( ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) ∧ 𝑦 ∈ 𝑥 ) → ( 𝐹 ‘ 𝑦 ) ∈ ( 0 [,) +∞ ) ) |
151 |
|
eqid |
⊢ ( 𝑦 ∈ 𝑥 ↦ ( 𝐹 ‘ 𝑦 ) ) = ( 𝑦 ∈ 𝑥 ↦ ( 𝐹 ‘ 𝑦 ) ) |
152 |
150 151
|
fmptd |
⊢ ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) → ( 𝑦 ∈ 𝑥 ↦ ( 𝐹 ‘ 𝑦 ) ) : 𝑥 ⟶ ( 0 [,) +∞ ) ) |
153 |
|
0e0icopnf |
⊢ 0 ∈ ( 0 [,) +∞ ) |
154 |
153
|
a1i |
⊢ ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) → 0 ∈ ( 0 [,) +∞ ) ) |
155 |
|
eliccxr |
⊢ ( 𝑦 ∈ ( 0 [,] +∞ ) → 𝑦 ∈ ℝ* ) |
156 |
|
xaddid2 |
⊢ ( 𝑦 ∈ ℝ* → ( 0 +𝑒 𝑦 ) = 𝑦 ) |
157 |
|
xaddid1 |
⊢ ( 𝑦 ∈ ℝ* → ( 𝑦 +𝑒 0 ) = 𝑦 ) |
158 |
156 157
|
jca |
⊢ ( 𝑦 ∈ ℝ* → ( ( 0 +𝑒 𝑦 ) = 𝑦 ∧ ( 𝑦 +𝑒 0 ) = 𝑦 ) ) |
159 |
155 158
|
syl |
⊢ ( 𝑦 ∈ ( 0 [,] +∞ ) → ( ( 0 +𝑒 𝑦 ) = 𝑦 ∧ ( 𝑦 +𝑒 0 ) = 𝑦 ) ) |
160 |
159
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) ∧ 𝑦 ∈ ( 0 [,] +∞ ) ) → ( ( 0 +𝑒 𝑦 ) = 𝑦 ∧ ( 𝑦 +𝑒 0 ) = 𝑦 ) ) |
161 |
72 108 114 116 117 118 152 154 160
|
gsumress |
⊢ ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) → ( 𝐺 Σg ( 𝑦 ∈ 𝑥 ↦ ( 𝐹 ‘ 𝑦 ) ) ) = ( ( ℝ*𝑠 ↾s ( 0 [,) +∞ ) ) Σg ( 𝑦 ∈ 𝑥 ↦ ( 𝐹 ‘ 𝑦 ) ) ) ) |
162 |
|
rege0subm |
⊢ ( 0 [,) +∞ ) ∈ ( SubMnd ‘ ℂfld ) |
163 |
162
|
a1i |
⊢ ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) → ( 0 [,) +∞ ) ∈ ( SubMnd ‘ ℂfld ) ) |
164 |
|
eqid |
⊢ ( ℂfld ↾s ( 0 [,) +∞ ) ) = ( ℂfld ↾s ( 0 [,) +∞ ) ) |
165 |
117 163 152 164
|
gsumsubm |
⊢ ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) → ( ℂfld Σg ( 𝑦 ∈ 𝑥 ↦ ( 𝐹 ‘ 𝑦 ) ) ) = ( ( ℂfld ↾s ( 0 [,) +∞ ) ) Σg ( 𝑦 ∈ 𝑥 ↦ ( 𝐹 ‘ 𝑦 ) ) ) ) |
166 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) → ( ( ℂfld ↾s ( 0 [,) +∞ ) ) Σg ( 𝑦 ∈ 𝑥 ↦ ( 𝐹 ‘ 𝑦 ) ) ) = ( ( ℂfld ↾s ( 0 [,) +∞ ) ) Σg ( 𝑦 ∈ 𝑥 ↦ ( 𝐹 ‘ 𝑦 ) ) ) ) |
167 |
|
vex |
⊢ 𝑥 ∈ V |
168 |
167
|
mptex |
⊢ ( 𝑦 ∈ 𝑥 ↦ ( 𝐹 ‘ 𝑦 ) ) ∈ V |
169 |
168
|
a1i |
⊢ ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) → ( 𝑦 ∈ 𝑥 ↦ ( 𝐹 ‘ 𝑦 ) ) ∈ V ) |
170 |
|
ovexd |
⊢ ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) → ( ℂfld ↾s ( 0 [,) +∞ ) ) ∈ V ) |
171 |
|
ovexd |
⊢ ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) → ( ℝ*𝑠 ↾s ( 0 [,) +∞ ) ) ∈ V ) |
172 |
|
rge0ssre |
⊢ ( 0 [,) +∞ ) ⊆ ℝ |
173 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
174 |
172 173
|
sstri |
⊢ ( 0 [,) +∞ ) ⊆ ℂ |
175 |
|
cnfldbas |
⊢ ℂ = ( Base ‘ ℂfld ) |
176 |
164 175
|
ressbas2 |
⊢ ( ( 0 [,) +∞ ) ⊆ ℂ → ( 0 [,) +∞ ) = ( Base ‘ ( ℂfld ↾s ( 0 [,) +∞ ) ) ) ) |
177 |
174 176
|
ax-mp |
⊢ ( 0 [,) +∞ ) = ( Base ‘ ( ℂfld ↾s ( 0 [,) +∞ ) ) ) |
178 |
177
|
eqcomi |
⊢ ( Base ‘ ( ℂfld ↾s ( 0 [,) +∞ ) ) ) = ( 0 [,) +∞ ) |
179 |
110 21
|
sstri |
⊢ ( 0 [,) +∞ ) ⊆ ℝ* |
180 |
|
eqid |
⊢ ( ℝ*𝑠 ↾s ( 0 [,) +∞ ) ) = ( ℝ*𝑠 ↾s ( 0 [,) +∞ ) ) |
181 |
180 69
|
ressbas2 |
⊢ ( ( 0 [,) +∞ ) ⊆ ℝ* → ( 0 [,) +∞ ) = ( Base ‘ ( ℝ*𝑠 ↾s ( 0 [,) +∞ ) ) ) ) |
182 |
179 181
|
ax-mp |
⊢ ( 0 [,) +∞ ) = ( Base ‘ ( ℝ*𝑠 ↾s ( 0 [,) +∞ ) ) ) |
183 |
178 182
|
eqtri |
⊢ ( Base ‘ ( ℂfld ↾s ( 0 [,) +∞ ) ) ) = ( Base ‘ ( ℝ*𝑠 ↾s ( 0 [,) +∞ ) ) ) |
184 |
183
|
a1i |
⊢ ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) → ( Base ‘ ( ℂfld ↾s ( 0 [,) +∞ ) ) ) = ( Base ‘ ( ℝ*𝑠 ↾s ( 0 [,) +∞ ) ) ) ) |
185 |
|
rge0srg |
⊢ ( ℂfld ↾s ( 0 [,) +∞ ) ) ∈ SRing |
186 |
185
|
a1i |
⊢ ( ( 𝑠 ∈ ( Base ‘ ( ℂfld ↾s ( 0 [,) +∞ ) ) ) ∧ 𝑡 ∈ ( Base ‘ ( ℂfld ↾s ( 0 [,) +∞ ) ) ) ) → ( ℂfld ↾s ( 0 [,) +∞ ) ) ∈ SRing ) |
187 |
|
simpl |
⊢ ( ( 𝑠 ∈ ( Base ‘ ( ℂfld ↾s ( 0 [,) +∞ ) ) ) ∧ 𝑡 ∈ ( Base ‘ ( ℂfld ↾s ( 0 [,) +∞ ) ) ) ) → 𝑠 ∈ ( Base ‘ ( ℂfld ↾s ( 0 [,) +∞ ) ) ) ) |
188 |
|
simpr |
⊢ ( ( 𝑠 ∈ ( Base ‘ ( ℂfld ↾s ( 0 [,) +∞ ) ) ) ∧ 𝑡 ∈ ( Base ‘ ( ℂfld ↾s ( 0 [,) +∞ ) ) ) ) → 𝑡 ∈ ( Base ‘ ( ℂfld ↾s ( 0 [,) +∞ ) ) ) ) |
189 |
|
eqid |
⊢ ( Base ‘ ( ℂfld ↾s ( 0 [,) +∞ ) ) ) = ( Base ‘ ( ℂfld ↾s ( 0 [,) +∞ ) ) ) |
190 |
|
eqid |
⊢ ( +g ‘ ( ℂfld ↾s ( 0 [,) +∞ ) ) ) = ( +g ‘ ( ℂfld ↾s ( 0 [,) +∞ ) ) ) |
191 |
189 190
|
srgacl |
⊢ ( ( ( ℂfld ↾s ( 0 [,) +∞ ) ) ∈ SRing ∧ 𝑠 ∈ ( Base ‘ ( ℂfld ↾s ( 0 [,) +∞ ) ) ) ∧ 𝑡 ∈ ( Base ‘ ( ℂfld ↾s ( 0 [,) +∞ ) ) ) ) → ( 𝑠 ( +g ‘ ( ℂfld ↾s ( 0 [,) +∞ ) ) ) 𝑡 ) ∈ ( Base ‘ ( ℂfld ↾s ( 0 [,) +∞ ) ) ) ) |
192 |
186 187 188 191
|
syl3anc |
⊢ ( ( 𝑠 ∈ ( Base ‘ ( ℂfld ↾s ( 0 [,) +∞ ) ) ) ∧ 𝑡 ∈ ( Base ‘ ( ℂfld ↾s ( 0 [,) +∞ ) ) ) ) → ( 𝑠 ( +g ‘ ( ℂfld ↾s ( 0 [,) +∞ ) ) ) 𝑡 ) ∈ ( Base ‘ ( ℂfld ↾s ( 0 [,) +∞ ) ) ) ) |
193 |
192
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) ∧ ( 𝑠 ∈ ( Base ‘ ( ℂfld ↾s ( 0 [,) +∞ ) ) ) ∧ 𝑡 ∈ ( Base ‘ ( ℂfld ↾s ( 0 [,) +∞ ) ) ) ) ) → ( 𝑠 ( +g ‘ ( ℂfld ↾s ( 0 [,) +∞ ) ) ) 𝑡 ) ∈ ( Base ‘ ( ℂfld ↾s ( 0 [,) +∞ ) ) ) ) |
194 |
172
|
a1i |
⊢ ( 𝑠 ∈ ( Base ‘ ( ℂfld ↾s ( 0 [,) +∞ ) ) ) → ( 0 [,) +∞ ) ⊆ ℝ ) |
195 |
|
id |
⊢ ( 𝑠 ∈ ( Base ‘ ( ℂfld ↾s ( 0 [,) +∞ ) ) ) → 𝑠 ∈ ( Base ‘ ( ℂfld ↾s ( 0 [,) +∞ ) ) ) ) |
196 |
195 178
|
eleqtrdi |
⊢ ( 𝑠 ∈ ( Base ‘ ( ℂfld ↾s ( 0 [,) +∞ ) ) ) → 𝑠 ∈ ( 0 [,) +∞ ) ) |
197 |
194 196
|
sseldd |
⊢ ( 𝑠 ∈ ( Base ‘ ( ℂfld ↾s ( 0 [,) +∞ ) ) ) → 𝑠 ∈ ℝ ) |
198 |
197
|
adantr |
⊢ ( ( 𝑠 ∈ ( Base ‘ ( ℂfld ↾s ( 0 [,) +∞ ) ) ) ∧ 𝑡 ∈ ( Base ‘ ( ℂfld ↾s ( 0 [,) +∞ ) ) ) ) → 𝑠 ∈ ℝ ) |
199 |
172
|
a1i |
⊢ ( 𝑡 ∈ ( Base ‘ ( ℂfld ↾s ( 0 [,) +∞ ) ) ) → ( 0 [,) +∞ ) ⊆ ℝ ) |
200 |
|
id |
⊢ ( 𝑡 ∈ ( Base ‘ ( ℂfld ↾s ( 0 [,) +∞ ) ) ) → 𝑡 ∈ ( Base ‘ ( ℂfld ↾s ( 0 [,) +∞ ) ) ) ) |
201 |
200 178
|
eleqtrdi |
⊢ ( 𝑡 ∈ ( Base ‘ ( ℂfld ↾s ( 0 [,) +∞ ) ) ) → 𝑡 ∈ ( 0 [,) +∞ ) ) |
202 |
199 201
|
sseldd |
⊢ ( 𝑡 ∈ ( Base ‘ ( ℂfld ↾s ( 0 [,) +∞ ) ) ) → 𝑡 ∈ ℝ ) |
203 |
202
|
adantl |
⊢ ( ( 𝑠 ∈ ( Base ‘ ( ℂfld ↾s ( 0 [,) +∞ ) ) ) ∧ 𝑡 ∈ ( Base ‘ ( ℂfld ↾s ( 0 [,) +∞ ) ) ) ) → 𝑡 ∈ ℝ ) |
204 |
|
rexadd |
⊢ ( ( 𝑠 ∈ ℝ ∧ 𝑡 ∈ ℝ ) → ( 𝑠 +𝑒 𝑡 ) = ( 𝑠 + 𝑡 ) ) |
205 |
204
|
eqcomd |
⊢ ( ( 𝑠 ∈ ℝ ∧ 𝑡 ∈ ℝ ) → ( 𝑠 + 𝑡 ) = ( 𝑠 +𝑒 𝑡 ) ) |
206 |
162
|
elexi |
⊢ ( 0 [,) +∞ ) ∈ V |
207 |
|
cnfldadd |
⊢ + = ( +g ‘ ℂfld ) |
208 |
164 207
|
ressplusg |
⊢ ( ( 0 [,) +∞ ) ∈ V → + = ( +g ‘ ( ℂfld ↾s ( 0 [,) +∞ ) ) ) ) |
209 |
206 208
|
ax-mp |
⊢ + = ( +g ‘ ( ℂfld ↾s ( 0 [,) +∞ ) ) ) |
210 |
209 207
|
eqtr3i |
⊢ ( +g ‘ ( ℂfld ↾s ( 0 [,) +∞ ) ) ) = ( +g ‘ ℂfld ) |
211 |
210 207
|
eqtr4i |
⊢ ( +g ‘ ( ℂfld ↾s ( 0 [,) +∞ ) ) ) = + |
212 |
211
|
oveqi |
⊢ ( 𝑠 ( +g ‘ ( ℂfld ↾s ( 0 [,) +∞ ) ) ) 𝑡 ) = ( 𝑠 + 𝑡 ) |
213 |
212
|
a1i |
⊢ ( ( 𝑠 ∈ ℝ ∧ 𝑡 ∈ ℝ ) → ( 𝑠 ( +g ‘ ( ℂfld ↾s ( 0 [,) +∞ ) ) ) 𝑡 ) = ( 𝑠 + 𝑡 ) ) |
214 |
180 104
|
ressplusg |
⊢ ( ( 0 [,) +∞ ) ∈ V → +𝑒 = ( +g ‘ ( ℝ*𝑠 ↾s ( 0 [,) +∞ ) ) ) ) |
215 |
206 214
|
ax-mp |
⊢ +𝑒 = ( +g ‘ ( ℝ*𝑠 ↾s ( 0 [,) +∞ ) ) ) |
216 |
215
|
eqcomi |
⊢ ( +g ‘ ( ℝ*𝑠 ↾s ( 0 [,) +∞ ) ) ) = +𝑒 |
217 |
216
|
oveqi |
⊢ ( 𝑠 ( +g ‘ ( ℝ*𝑠 ↾s ( 0 [,) +∞ ) ) ) 𝑡 ) = ( 𝑠 +𝑒 𝑡 ) |
218 |
217
|
a1i |
⊢ ( ( 𝑠 ∈ ℝ ∧ 𝑡 ∈ ℝ ) → ( 𝑠 ( +g ‘ ( ℝ*𝑠 ↾s ( 0 [,) +∞ ) ) ) 𝑡 ) = ( 𝑠 +𝑒 𝑡 ) ) |
219 |
205 213 218
|
3eqtr4d |
⊢ ( ( 𝑠 ∈ ℝ ∧ 𝑡 ∈ ℝ ) → ( 𝑠 ( +g ‘ ( ℂfld ↾s ( 0 [,) +∞ ) ) ) 𝑡 ) = ( 𝑠 ( +g ‘ ( ℝ*𝑠 ↾s ( 0 [,) +∞ ) ) ) 𝑡 ) ) |
220 |
198 203 219
|
syl2anc |
⊢ ( ( 𝑠 ∈ ( Base ‘ ( ℂfld ↾s ( 0 [,) +∞ ) ) ) ∧ 𝑡 ∈ ( Base ‘ ( ℂfld ↾s ( 0 [,) +∞ ) ) ) ) → ( 𝑠 ( +g ‘ ( ℂfld ↾s ( 0 [,) +∞ ) ) ) 𝑡 ) = ( 𝑠 ( +g ‘ ( ℝ*𝑠 ↾s ( 0 [,) +∞ ) ) ) 𝑡 ) ) |
221 |
220
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) ∧ ( 𝑠 ∈ ( Base ‘ ( ℂfld ↾s ( 0 [,) +∞ ) ) ) ∧ 𝑡 ∈ ( Base ‘ ( ℂfld ↾s ( 0 [,) +∞ ) ) ) ) ) → ( 𝑠 ( +g ‘ ( ℂfld ↾s ( 0 [,) +∞ ) ) ) 𝑡 ) = ( 𝑠 ( +g ‘ ( ℝ*𝑠 ↾s ( 0 [,) +∞ ) ) ) 𝑡 ) ) |
222 |
|
funmpt |
⊢ Fun ( 𝑦 ∈ 𝑥 ↦ ( 𝐹 ‘ 𝑦 ) ) |
223 |
222
|
a1i |
⊢ ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) → Fun ( 𝑦 ∈ 𝑥 ↦ ( 𝐹 ‘ 𝑦 ) ) ) |
224 |
150 177
|
eleqtrdi |
⊢ ( ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) ∧ 𝑦 ∈ 𝑥 ) → ( 𝐹 ‘ 𝑦 ) ∈ ( Base ‘ ( ℂfld ↾s ( 0 [,) +∞ ) ) ) ) |
225 |
224
|
ralrimiva |
⊢ ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) → ∀ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ∈ ( Base ‘ ( ℂfld ↾s ( 0 [,) +∞ ) ) ) ) |
226 |
151
|
rnmptss |
⊢ ( ∀ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ∈ ( Base ‘ ( ℂfld ↾s ( 0 [,) +∞ ) ) ) → ran ( 𝑦 ∈ 𝑥 ↦ ( 𝐹 ‘ 𝑦 ) ) ⊆ ( Base ‘ ( ℂfld ↾s ( 0 [,) +∞ ) ) ) ) |
227 |
225 226
|
syl |
⊢ ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) → ran ( 𝑦 ∈ 𝑥 ↦ ( 𝐹 ‘ 𝑦 ) ) ⊆ ( Base ‘ ( ℂfld ↾s ( 0 [,) +∞ ) ) ) ) |
228 |
169 170 171 184 193 221 223 227
|
gsumpropd2 |
⊢ ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) → ( ( ℂfld ↾s ( 0 [,) +∞ ) ) Σg ( 𝑦 ∈ 𝑥 ↦ ( 𝐹 ‘ 𝑦 ) ) ) = ( ( ℝ*𝑠 ↾s ( 0 [,) +∞ ) ) Σg ( 𝑦 ∈ 𝑥 ↦ ( 𝐹 ‘ 𝑦 ) ) ) ) |
229 |
165 166 228
|
3eqtrd |
⊢ ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) → ( ℂfld Σg ( 𝑦 ∈ 𝑥 ↦ ( 𝐹 ‘ 𝑦 ) ) ) = ( ( ℝ*𝑠 ↾s ( 0 [,) +∞ ) ) Σg ( 𝑦 ∈ 𝑥 ↦ ( 𝐹 ‘ 𝑦 ) ) ) ) |
230 |
30
|
adantl |
⊢ ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) → 𝑥 ∈ Fin ) |
231 |
148
|
recnd |
⊢ ( ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) ∧ 𝑦 ∈ 𝑥 ) → ( 𝐹 ‘ 𝑦 ) ∈ ℂ ) |
232 |
230 231
|
gsumfsum |
⊢ ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) → ( ℂfld Σg ( 𝑦 ∈ 𝑥 ↦ ( 𝐹 ‘ 𝑦 ) ) ) = Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ) |
233 |
229 232
|
eqtr3d |
⊢ ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) → ( ( ℝ*𝑠 ↾s ( 0 [,) +∞ ) ) Σg ( 𝑦 ∈ 𝑥 ↦ ( 𝐹 ‘ 𝑦 ) ) ) = Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ) |
234 |
101 161 233
|
3eqtrrd |
⊢ ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) → Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) = ( 𝐺 Σg ( 𝐹 ↾ 𝑥 ) ) ) |
235 |
234
|
mpteq2dva |
⊢ ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) → ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ) = ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑥 ) ) ) ) |
236 |
235
|
rneqd |
⊢ ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) → ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ) = ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑥 ) ) ) ) |
237 |
236
|
supeq1d |
⊢ ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) → sup ( ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ) , ℝ* , < ) = sup ( ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑥 ) ) ) , ℝ* , < ) ) |
238 |
98 237
|
eqtrd |
⊢ ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) → ( Σ^ ‘ 𝐹 ) = sup ( ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑥 ) ) ) , ℝ* , < ) ) |
239 |
93 238
|
pm2.61dan |
⊢ ( 𝜑 → ( Σ^ ‘ 𝐹 ) = sup ( ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑥 ) ) ) , ℝ* , < ) ) |
240 |
1 2 3 4
|
xrge0tsms |
⊢ ( 𝜑 → ( 𝐺 tsums 𝐹 ) = { sup ( ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑥 ) ) ) , ℝ* , < ) } ) |
241 |
239 240
|
eleq12d |
⊢ ( 𝜑 → ( ( Σ^ ‘ 𝐹 ) ∈ ( 𝐺 tsums 𝐹 ) ↔ sup ( ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑥 ) ) ) , ℝ* , < ) ∈ { sup ( ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑥 ) ) ) , ℝ* , < ) } ) ) |
242 |
11 241
|
mpbird |
⊢ ( 𝜑 → ( Σ^ ‘ 𝐹 ) ∈ ( 𝐺 tsums 𝐹 ) ) |