Metamath Proof Explorer


Theorem sge0tsms

Description: sum^ applied to a nonnegative function (its meaningful domain) is the same as the infinite group sum (that's always convergent, in this case). (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses sge0tsms.g 𝐺 = ( ℝ*𝑠s ( 0 [,] +∞ ) )
sge0tsms.x ( 𝜑𝑋𝑉 )
sge0tsms.f ( 𝜑𝐹 : 𝑋 ⟶ ( 0 [,] +∞ ) )
Assertion sge0tsms ( 𝜑 → ( Σ^𝐹 ) ∈ ( 𝐺 tsums 𝐹 ) )

Proof

Step Hyp Ref Expression
1 sge0tsms.g 𝐺 = ( ℝ*𝑠s ( 0 [,] +∞ ) )
2 sge0tsms.x ( 𝜑𝑋𝑉 )
3 sge0tsms.f ( 𝜑𝐹 : 𝑋 ⟶ ( 0 [,] +∞ ) )
4 eqid sup ( ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( 𝐺 Σg ( 𝐹𝑥 ) ) ) , ℝ* , < ) = sup ( ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( 𝐺 Σg ( 𝐹𝑥 ) ) ) , ℝ* , < )
5 4 a1i ( 𝜑 → sup ( ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( 𝐺 Σg ( 𝐹𝑥 ) ) ) , ℝ* , < ) = sup ( ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( 𝐺 Σg ( 𝐹𝑥 ) ) ) , ℝ* , < ) )
6 xrltso < Or ℝ*
7 6 supex sup ( ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( 𝐺 Σg ( 𝐹𝑥 ) ) ) , ℝ* , < ) ∈ V
8 7 a1i ( 𝜑 → sup ( ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( 𝐺 Σg ( 𝐹𝑥 ) ) ) , ℝ* , < ) ∈ V )
9 elsng ( sup ( ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( 𝐺 Σg ( 𝐹𝑥 ) ) ) , ℝ* , < ) ∈ V → ( sup ( ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( 𝐺 Σg ( 𝐹𝑥 ) ) ) , ℝ* , < ) ∈ { sup ( ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( 𝐺 Σg ( 𝐹𝑥 ) ) ) , ℝ* , < ) } ↔ sup ( ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( 𝐺 Σg ( 𝐹𝑥 ) ) ) , ℝ* , < ) = sup ( ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( 𝐺 Σg ( 𝐹𝑥 ) ) ) , ℝ* , < ) ) )
10 8 9 syl ( 𝜑 → ( sup ( ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( 𝐺 Σg ( 𝐹𝑥 ) ) ) , ℝ* , < ) ∈ { sup ( ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( 𝐺 Σg ( 𝐹𝑥 ) ) ) , ℝ* , < ) } ↔ sup ( ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( 𝐺 Σg ( 𝐹𝑥 ) ) ) , ℝ* , < ) = sup ( ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( 𝐺 Σg ( 𝐹𝑥 ) ) ) , ℝ* , < ) ) )
11 5 10 mpbird ( 𝜑 → sup ( ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( 𝐺 Σg ( 𝐹𝑥 ) ) ) , ℝ* , < ) ∈ { sup ( ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( 𝐺 Σg ( 𝐹𝑥 ) ) ) , ℝ* , < ) } )
12 2 adantr ( ( 𝜑 ∧ +∞ ∈ ran 𝐹 ) → 𝑋𝑉 )
13 3 adantr ( ( 𝜑 ∧ +∞ ∈ ran 𝐹 ) → 𝐹 : 𝑋 ⟶ ( 0 [,] +∞ ) )
14 simpr ( ( 𝜑 ∧ +∞ ∈ ran 𝐹 ) → +∞ ∈ ran 𝐹 )
15 12 13 14 sge0pnfval ( ( 𝜑 ∧ +∞ ∈ ran 𝐹 ) → ( Σ^𝐹 ) = +∞ )
16 3 ffnd ( 𝜑𝐹 Fn 𝑋 )
17 16 adantr ( ( 𝜑 ∧ +∞ ∈ ran 𝐹 ) → 𝐹 Fn 𝑋 )
18 fvelrnb ( 𝐹 Fn 𝑋 → ( +∞ ∈ ran 𝐹 ↔ ∃ 𝑦𝑋 ( 𝐹𝑦 ) = +∞ ) )
19 17 18 syl ( ( 𝜑 ∧ +∞ ∈ ran 𝐹 ) → ( +∞ ∈ ran 𝐹 ↔ ∃ 𝑦𝑋 ( 𝐹𝑦 ) = +∞ ) )
20 14 19 mpbid ( ( 𝜑 ∧ +∞ ∈ ran 𝐹 ) → ∃ 𝑦𝑋 ( 𝐹𝑦 ) = +∞ )
21 iccssxr ( 0 [,] +∞ ) ⊆ ℝ*
22 simpr ( ( 𝜑𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) → 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) )
23 3 adantr ( ( 𝜑𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) → 𝐹 : 𝑋 ⟶ ( 0 [,] +∞ ) )
24 elinel1 ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) → 𝑥 ∈ 𝒫 𝑋 )
25 elpwi ( 𝑥 ∈ 𝒫 𝑋𝑥𝑋 )
26 24 25 syl ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) → 𝑥𝑋 )
27 26 adantl ( ( 𝜑𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) → 𝑥𝑋 )
28 fssres ( ( 𝐹 : 𝑋 ⟶ ( 0 [,] +∞ ) ∧ 𝑥𝑋 ) → ( 𝐹𝑥 ) : 𝑥 ⟶ ( 0 [,] +∞ ) )
29 23 27 28 syl2anc ( ( 𝜑𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) → ( 𝐹𝑥 ) : 𝑥 ⟶ ( 0 [,] +∞ ) )
30 elinel2 ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) → 𝑥 ∈ Fin )
31 30 adantl ( ( 𝜑𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) → 𝑥 ∈ Fin )
32 0red ( ( 𝜑𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) → 0 ∈ ℝ )
33 29 31 32 fdmfifsupp ( ( 𝜑𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) → ( 𝐹𝑥 ) finSupp 0 )
34 1 22 29 33 gsumge0cl ( ( 𝜑𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) → ( 𝐺 Σg ( 𝐹𝑥 ) ) ∈ ( 0 [,] +∞ ) )
35 21 34 sseldi ( ( 𝜑𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) → ( 𝐺 Σg ( 𝐹𝑥 ) ) ∈ ℝ* )
36 35 ralrimiva ( 𝜑 → ∀ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ( 𝐺 Σg ( 𝐹𝑥 ) ) ∈ ℝ* )
37 36 3ad2ant1 ( ( 𝜑𝑦𝑋 ∧ ( 𝐹𝑦 ) = +∞ ) → ∀ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ( 𝐺 Σg ( 𝐹𝑥 ) ) ∈ ℝ* )
38 eqid ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( 𝐺 Σg ( 𝐹𝑥 ) ) ) = ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( 𝐺 Σg ( 𝐹𝑥 ) ) )
39 38 rnmptss ( ∀ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ( 𝐺 Σg ( 𝐹𝑥 ) ) ∈ ℝ* → ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( 𝐺 Σg ( 𝐹𝑥 ) ) ) ⊆ ℝ* )
40 37 39 syl ( ( 𝜑𝑦𝑋 ∧ ( 𝐹𝑦 ) = +∞ ) → ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( 𝐺 Σg ( 𝐹𝑥 ) ) ) ⊆ ℝ* )
41 snelpwi ( 𝑦𝑋 → { 𝑦 } ∈ 𝒫 𝑋 )
42 snfi { 𝑦 } ∈ Fin
43 42 a1i ( 𝑦𝑋 → { 𝑦 } ∈ Fin )
44 41 43 elind ( 𝑦𝑋 → { 𝑦 } ∈ ( 𝒫 𝑋 ∩ Fin ) )
45 44 3ad2ant2 ( ( 𝜑𝑦𝑋 ∧ ( 𝐹𝑦 ) = +∞ ) → { 𝑦 } ∈ ( 𝒫 𝑋 ∩ Fin ) )
46 3 adantr ( ( 𝜑𝑦𝑋 ) → 𝐹 : 𝑋 ⟶ ( 0 [,] +∞ ) )
47 snssi ( 𝑦𝑋 → { 𝑦 } ⊆ 𝑋 )
48 47 adantl ( ( 𝜑𝑦𝑋 ) → { 𝑦 } ⊆ 𝑋 )
49 46 48 fssresd ( ( 𝜑𝑦𝑋 ) → ( 𝐹 ↾ { 𝑦 } ) : { 𝑦 } ⟶ ( 0 [,] +∞ ) )
50 49 feqmptd ( ( 𝜑𝑦𝑋 ) → ( 𝐹 ↾ { 𝑦 } ) = ( 𝑥 ∈ { 𝑦 } ↦ ( ( 𝐹 ↾ { 𝑦 } ) ‘ 𝑥 ) ) )
51 fvres ( 𝑥 ∈ { 𝑦 } → ( ( 𝐹 ↾ { 𝑦 } ) ‘ 𝑥 ) = ( 𝐹𝑥 ) )
52 51 mpteq2ia ( 𝑥 ∈ { 𝑦 } ↦ ( ( 𝐹 ↾ { 𝑦 } ) ‘ 𝑥 ) ) = ( 𝑥 ∈ { 𝑦 } ↦ ( 𝐹𝑥 ) )
53 52 a1i ( ( 𝜑𝑦𝑋 ) → ( 𝑥 ∈ { 𝑦 } ↦ ( ( 𝐹 ↾ { 𝑦 } ) ‘ 𝑥 ) ) = ( 𝑥 ∈ { 𝑦 } ↦ ( 𝐹𝑥 ) ) )
54 50 53 eqtrd ( ( 𝜑𝑦𝑋 ) → ( 𝐹 ↾ { 𝑦 } ) = ( 𝑥 ∈ { 𝑦 } ↦ ( 𝐹𝑥 ) ) )
55 54 oveq2d ( ( 𝜑𝑦𝑋 ) → ( 𝐺 Σg ( 𝐹 ↾ { 𝑦 } ) ) = ( 𝐺 Σg ( 𝑥 ∈ { 𝑦 } ↦ ( 𝐹𝑥 ) ) ) )
56 55 3adant3 ( ( 𝜑𝑦𝑋 ∧ ( 𝐹𝑦 ) = +∞ ) → ( 𝐺 Σg ( 𝐹 ↾ { 𝑦 } ) ) = ( 𝐺 Σg ( 𝑥 ∈ { 𝑦 } ↦ ( 𝐹𝑥 ) ) ) )
57 xrge0cmn ( ℝ*𝑠s ( 0 [,] +∞ ) ) ∈ CMnd
58 1 57 eqeltri 𝐺 ∈ CMnd
59 cmnmnd ( 𝐺 ∈ CMnd → 𝐺 ∈ Mnd )
60 58 59 ax-mp 𝐺 ∈ Mnd
61 60 a1i ( ( 𝜑𝑦𝑋 ∧ ( 𝐹𝑦 ) = +∞ ) → 𝐺 ∈ Mnd )
62 simp2 ( ( 𝜑𝑦𝑋 ∧ ( 𝐹𝑦 ) = +∞ ) → 𝑦𝑋 )
63 3 ffvelrnda ( ( 𝜑𝑦𝑋 ) → ( 𝐹𝑦 ) ∈ ( 0 [,] +∞ ) )
64 63 3adant3 ( ( 𝜑𝑦𝑋 ∧ ( 𝐹𝑦 ) = +∞ ) → ( 𝐹𝑦 ) ∈ ( 0 [,] +∞ ) )
65 df-ss ( ( 0 [,] +∞ ) ⊆ ℝ* ↔ ( ( 0 [,] +∞ ) ∩ ℝ* ) = ( 0 [,] +∞ ) )
66 21 65 mpbi ( ( 0 [,] +∞ ) ∩ ℝ* ) = ( 0 [,] +∞ )
67 66 eqcomi ( 0 [,] +∞ ) = ( ( 0 [,] +∞ ) ∩ ℝ* )
68 ovex ( 0 [,] +∞ ) ∈ V
69 xrsbas * = ( Base ‘ ℝ*𝑠 )
70 1 69 ressbas ( ( 0 [,] +∞ ) ∈ V → ( ( 0 [,] +∞ ) ∩ ℝ* ) = ( Base ‘ 𝐺 ) )
71 68 70 ax-mp ( ( 0 [,] +∞ ) ∩ ℝ* ) = ( Base ‘ 𝐺 )
72 67 71 eqtri ( 0 [,] +∞ ) = ( Base ‘ 𝐺 )
73 fveq2 ( 𝑥 = 𝑦 → ( 𝐹𝑥 ) = ( 𝐹𝑦 ) )
74 72 73 gsumsn ( ( 𝐺 ∈ Mnd ∧ 𝑦𝑋 ∧ ( 𝐹𝑦 ) ∈ ( 0 [,] +∞ ) ) → ( 𝐺 Σg ( 𝑥 ∈ { 𝑦 } ↦ ( 𝐹𝑥 ) ) ) = ( 𝐹𝑦 ) )
75 61 62 64 74 syl3anc ( ( 𝜑𝑦𝑋 ∧ ( 𝐹𝑦 ) = +∞ ) → ( 𝐺 Σg ( 𝑥 ∈ { 𝑦 } ↦ ( 𝐹𝑥 ) ) ) = ( 𝐹𝑦 ) )
76 simp3 ( ( 𝜑𝑦𝑋 ∧ ( 𝐹𝑦 ) = +∞ ) → ( 𝐹𝑦 ) = +∞ )
77 56 75 76 3eqtrrd ( ( 𝜑𝑦𝑋 ∧ ( 𝐹𝑦 ) = +∞ ) → +∞ = ( 𝐺 Σg ( 𝐹 ↾ { 𝑦 } ) ) )
78 reseq2 ( 𝑥 = { 𝑦 } → ( 𝐹𝑥 ) = ( 𝐹 ↾ { 𝑦 } ) )
79 78 oveq2d ( 𝑥 = { 𝑦 } → ( 𝐺 Σg ( 𝐹𝑥 ) ) = ( 𝐺 Σg ( 𝐹 ↾ { 𝑦 } ) ) )
80 79 rspceeqv ( ( { 𝑦 } ∈ ( 𝒫 𝑋 ∩ Fin ) ∧ +∞ = ( 𝐺 Σg ( 𝐹 ↾ { 𝑦 } ) ) ) → ∃ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) +∞ = ( 𝐺 Σg ( 𝐹𝑥 ) ) )
81 45 77 80 syl2anc ( ( 𝜑𝑦𝑋 ∧ ( 𝐹𝑦 ) = +∞ ) → ∃ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) +∞ = ( 𝐺 Σg ( 𝐹𝑥 ) ) )
82 pnfxr +∞ ∈ ℝ*
83 82 a1i ( ( 𝜑𝑦𝑋 ∧ ( 𝐹𝑦 ) = +∞ ) → +∞ ∈ ℝ* )
84 38 elrnmpt ( +∞ ∈ ℝ* → ( +∞ ∈ ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( 𝐺 Σg ( 𝐹𝑥 ) ) ) ↔ ∃ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) +∞ = ( 𝐺 Σg ( 𝐹𝑥 ) ) ) )
85 83 84 syl ( ( 𝜑𝑦𝑋 ∧ ( 𝐹𝑦 ) = +∞ ) → ( +∞ ∈ ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( 𝐺 Σg ( 𝐹𝑥 ) ) ) ↔ ∃ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) +∞ = ( 𝐺 Σg ( 𝐹𝑥 ) ) ) )
86 81 85 mpbird ( ( 𝜑𝑦𝑋 ∧ ( 𝐹𝑦 ) = +∞ ) → +∞ ∈ ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( 𝐺 Σg ( 𝐹𝑥 ) ) ) )
87 supxrpnf ( ( ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( 𝐺 Σg ( 𝐹𝑥 ) ) ) ⊆ ℝ* ∧ +∞ ∈ ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( 𝐺 Σg ( 𝐹𝑥 ) ) ) ) → sup ( ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( 𝐺 Σg ( 𝐹𝑥 ) ) ) , ℝ* , < ) = +∞ )
88 40 86 87 syl2anc ( ( 𝜑𝑦𝑋 ∧ ( 𝐹𝑦 ) = +∞ ) → sup ( ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( 𝐺 Σg ( 𝐹𝑥 ) ) ) , ℝ* , < ) = +∞ )
89 88 3exp ( 𝜑 → ( 𝑦𝑋 → ( ( 𝐹𝑦 ) = +∞ → sup ( ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( 𝐺 Σg ( 𝐹𝑥 ) ) ) , ℝ* , < ) = +∞ ) ) )
90 89 adantr ( ( 𝜑 ∧ +∞ ∈ ran 𝐹 ) → ( 𝑦𝑋 → ( ( 𝐹𝑦 ) = +∞ → sup ( ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( 𝐺 Σg ( 𝐹𝑥 ) ) ) , ℝ* , < ) = +∞ ) ) )
91 90 rexlimdv ( ( 𝜑 ∧ +∞ ∈ ran 𝐹 ) → ( ∃ 𝑦𝑋 ( 𝐹𝑦 ) = +∞ → sup ( ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( 𝐺 Σg ( 𝐹𝑥 ) ) ) , ℝ* , < ) = +∞ ) )
92 20 91 mpd ( ( 𝜑 ∧ +∞ ∈ ran 𝐹 ) → sup ( ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( 𝐺 Σg ( 𝐹𝑥 ) ) ) , ℝ* , < ) = +∞ )
93 15 92 eqtr4d ( ( 𝜑 ∧ +∞ ∈ ran 𝐹 ) → ( Σ^𝐹 ) = sup ( ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( 𝐺 Σg ( 𝐹𝑥 ) ) ) , ℝ* , < ) )
94 2 adantr ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) → 𝑋𝑉 )
95 3 adantr ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) → 𝐹 : 𝑋 ⟶ ( 0 [,] +∞ ) )
96 simpr ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) → ¬ +∞ ∈ ran 𝐹 )
97 95 96 fge0iccico ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) → 𝐹 : 𝑋 ⟶ ( 0 [,) +∞ ) )
98 94 97 sge0reval ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) → ( Σ^𝐹 ) = sup ( ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ Σ 𝑦𝑥 ( 𝐹𝑦 ) ) , ℝ* , < ) )
99 23 27 feqresmpt ( ( 𝜑𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) → ( 𝐹𝑥 ) = ( 𝑦𝑥 ↦ ( 𝐹𝑦 ) ) )
100 99 adantlr ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) → ( 𝐹𝑥 ) = ( 𝑦𝑥 ↦ ( 𝐹𝑦 ) ) )
101 100 oveq2d ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) → ( 𝐺 Σg ( 𝐹𝑥 ) ) = ( 𝐺 Σg ( 𝑦𝑥 ↦ ( 𝐹𝑦 ) ) ) )
102 1 fveq2i ( +g𝐺 ) = ( +g ‘ ( ℝ*𝑠s ( 0 [,] +∞ ) ) )
103 eqid ( ℝ*𝑠s ( 0 [,] +∞ ) ) = ( ℝ*𝑠s ( 0 [,] +∞ ) )
104 xrsadd +𝑒 = ( +g ‘ ℝ*𝑠 )
105 103 104 ressplusg ( ( 0 [,] +∞ ) ∈ V → +𝑒 = ( +g ‘ ( ℝ*𝑠s ( 0 [,] +∞ ) ) ) )
106 68 105 ax-mp +𝑒 = ( +g ‘ ( ℝ*𝑠s ( 0 [,] +∞ ) ) )
107 106 eqcomi ( +g ‘ ( ℝ*𝑠s ( 0 [,] +∞ ) ) ) = +𝑒
108 102 107 eqtr2i +𝑒 = ( +g𝐺 )
109 1 oveq1i ( 𝐺s ( 0 [,) +∞ ) ) = ( ( ℝ*𝑠s ( 0 [,] +∞ ) ) ↾s ( 0 [,) +∞ ) )
110 icossicc ( 0 [,) +∞ ) ⊆ ( 0 [,] +∞ )
111 68 110 pm3.2i ( ( 0 [,] +∞ ) ∈ V ∧ ( 0 [,) +∞ ) ⊆ ( 0 [,] +∞ ) )
112 ressabs ( ( ( 0 [,] +∞ ) ∈ V ∧ ( 0 [,) +∞ ) ⊆ ( 0 [,] +∞ ) ) → ( ( ℝ*𝑠s ( 0 [,] +∞ ) ) ↾s ( 0 [,) +∞ ) ) = ( ℝ*𝑠s ( 0 [,) +∞ ) ) )
113 111 112 ax-mp ( ( ℝ*𝑠s ( 0 [,] +∞ ) ) ↾s ( 0 [,) +∞ ) ) = ( ℝ*𝑠s ( 0 [,) +∞ ) )
114 109 113 eqtr2i ( ℝ*𝑠s ( 0 [,) +∞ ) ) = ( 𝐺s ( 0 [,) +∞ ) )
115 58 elexi 𝐺 ∈ V
116 115 a1i ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) → 𝐺 ∈ V )
117 simpr ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) → 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) )
118 110 a1i ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) → ( 0 [,) +∞ ) ⊆ ( 0 [,] +∞ ) )
119 0xr 0 ∈ ℝ*
120 119 a1i ( ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) ∧ 𝑦𝑥 ) → 0 ∈ ℝ* )
121 82 a1i ( ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) ∧ 𝑦𝑥 ) → +∞ ∈ ℝ* )
122 95 ad2antrr ( ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) ∧ 𝑦𝑥 ) → 𝐹 : 𝑋 ⟶ ( 0 [,] +∞ ) )
123 26 sselda ( ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ∧ 𝑦𝑥 ) → 𝑦𝑋 )
124 123 adantll ( ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) ∧ 𝑦𝑥 ) → 𝑦𝑋 )
125 122 124 ffvelrnd ( ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) ∧ 𝑦𝑥 ) → ( 𝐹𝑦 ) ∈ ( 0 [,] +∞ ) )
126 21 125 sseldi ( ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) ∧ 𝑦𝑥 ) → ( 𝐹𝑦 ) ∈ ℝ* )
127 iccgelb ( ( 0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ ( 𝐹𝑦 ) ∈ ( 0 [,] +∞ ) ) → 0 ≤ ( 𝐹𝑦 ) )
128 120 121 125 127 syl3anc ( ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) ∧ 𝑦𝑥 ) → 0 ≤ ( 𝐹𝑦 ) )
129 id ( ( 𝐹𝑦 ) = +∞ → ( 𝐹𝑦 ) = +∞ )
130 129 eqcomd ( ( 𝐹𝑦 ) = +∞ → +∞ = ( 𝐹𝑦 ) )
131 130 adantl ( ( ( ( 𝜑𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) ∧ 𝑦𝑥 ) ∧ ( 𝐹𝑦 ) = +∞ ) → +∞ = ( 𝐹𝑦 ) )
132 3 ffund ( 𝜑 → Fun 𝐹 )
133 132 ad2antrr ( ( ( 𝜑𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) ∧ 𝑦𝑥 ) → Fun 𝐹 )
134 22 123 sylan ( ( ( 𝜑𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) ∧ 𝑦𝑥 ) → 𝑦𝑋 )
135 3 fdmd ( 𝜑 → dom 𝐹 = 𝑋 )
136 135 eqcomd ( 𝜑𝑋 = dom 𝐹 )
137 136 ad2antrr ( ( ( 𝜑𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) ∧ 𝑦𝑥 ) → 𝑋 = dom 𝐹 )
138 134 137 eleqtrd ( ( ( 𝜑𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) ∧ 𝑦𝑥 ) → 𝑦 ∈ dom 𝐹 )
139 fvelrn ( ( Fun 𝐹𝑦 ∈ dom 𝐹 ) → ( 𝐹𝑦 ) ∈ ran 𝐹 )
140 133 138 139 syl2anc ( ( ( 𝜑𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) ∧ 𝑦𝑥 ) → ( 𝐹𝑦 ) ∈ ran 𝐹 )
141 140 adantr ( ( ( ( 𝜑𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) ∧ 𝑦𝑥 ) ∧ ( 𝐹𝑦 ) = +∞ ) → ( 𝐹𝑦 ) ∈ ran 𝐹 )
142 131 141 eqeltrd ( ( ( ( 𝜑𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) ∧ 𝑦𝑥 ) ∧ ( 𝐹𝑦 ) = +∞ ) → +∞ ∈ ran 𝐹 )
143 142 adantl3r ( ( ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) ∧ 𝑦𝑥 ) ∧ ( 𝐹𝑦 ) = +∞ ) → +∞ ∈ ran 𝐹 )
144 96 ad3antrrr ( ( ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) ∧ 𝑦𝑥 ) ∧ ( 𝐹𝑦 ) = +∞ ) → ¬ +∞ ∈ ran 𝐹 )
145 143 144 pm2.65da ( ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) ∧ 𝑦𝑥 ) → ¬ ( 𝐹𝑦 ) = +∞ )
146 145 neqned ( ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) ∧ 𝑦𝑥 ) → ( 𝐹𝑦 ) ≠ +∞ )
147 ge0xrre ( ( ( 𝐹𝑦 ) ∈ ( 0 [,] +∞ ) ∧ ( 𝐹𝑦 ) ≠ +∞ ) → ( 𝐹𝑦 ) ∈ ℝ )
148 125 146 147 syl2anc ( ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) ∧ 𝑦𝑥 ) → ( 𝐹𝑦 ) ∈ ℝ )
149 148 ltpnfd ( ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) ∧ 𝑦𝑥 ) → ( 𝐹𝑦 ) < +∞ )
150 120 121 126 128 149 elicod ( ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) ∧ 𝑦𝑥 ) → ( 𝐹𝑦 ) ∈ ( 0 [,) +∞ ) )
151 eqid ( 𝑦𝑥 ↦ ( 𝐹𝑦 ) ) = ( 𝑦𝑥 ↦ ( 𝐹𝑦 ) )
152 150 151 fmptd ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) → ( 𝑦𝑥 ↦ ( 𝐹𝑦 ) ) : 𝑥 ⟶ ( 0 [,) +∞ ) )
153 0e0icopnf 0 ∈ ( 0 [,) +∞ )
154 153 a1i ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) → 0 ∈ ( 0 [,) +∞ ) )
155 eliccxr ( 𝑦 ∈ ( 0 [,] +∞ ) → 𝑦 ∈ ℝ* )
156 xaddid2 ( 𝑦 ∈ ℝ* → ( 0 +𝑒 𝑦 ) = 𝑦 )
157 xaddid1 ( 𝑦 ∈ ℝ* → ( 𝑦 +𝑒 0 ) = 𝑦 )
158 156 157 jca ( 𝑦 ∈ ℝ* → ( ( 0 +𝑒 𝑦 ) = 𝑦 ∧ ( 𝑦 +𝑒 0 ) = 𝑦 ) )
159 155 158 syl ( 𝑦 ∈ ( 0 [,] +∞ ) → ( ( 0 +𝑒 𝑦 ) = 𝑦 ∧ ( 𝑦 +𝑒 0 ) = 𝑦 ) )
160 159 adantl ( ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) ∧ 𝑦 ∈ ( 0 [,] +∞ ) ) → ( ( 0 +𝑒 𝑦 ) = 𝑦 ∧ ( 𝑦 +𝑒 0 ) = 𝑦 ) )
161 72 108 114 116 117 118 152 154 160 gsumress ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) → ( 𝐺 Σg ( 𝑦𝑥 ↦ ( 𝐹𝑦 ) ) ) = ( ( ℝ*𝑠s ( 0 [,) +∞ ) ) Σg ( 𝑦𝑥 ↦ ( 𝐹𝑦 ) ) ) )
162 rege0subm ( 0 [,) +∞ ) ∈ ( SubMnd ‘ ℂfld )
163 162 a1i ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) → ( 0 [,) +∞ ) ∈ ( SubMnd ‘ ℂfld ) )
164 eqid ( ℂflds ( 0 [,) +∞ ) ) = ( ℂflds ( 0 [,) +∞ ) )
165 117 163 152 164 gsumsubm ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) → ( ℂfld Σg ( 𝑦𝑥 ↦ ( 𝐹𝑦 ) ) ) = ( ( ℂflds ( 0 [,) +∞ ) ) Σg ( 𝑦𝑥 ↦ ( 𝐹𝑦 ) ) ) )
166 eqidd ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) → ( ( ℂflds ( 0 [,) +∞ ) ) Σg ( 𝑦𝑥 ↦ ( 𝐹𝑦 ) ) ) = ( ( ℂflds ( 0 [,) +∞ ) ) Σg ( 𝑦𝑥 ↦ ( 𝐹𝑦 ) ) ) )
167 vex 𝑥 ∈ V
168 167 mptex ( 𝑦𝑥 ↦ ( 𝐹𝑦 ) ) ∈ V
169 168 a1i ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) → ( 𝑦𝑥 ↦ ( 𝐹𝑦 ) ) ∈ V )
170 ovexd ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) → ( ℂflds ( 0 [,) +∞ ) ) ∈ V )
171 ovexd ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) → ( ℝ*𝑠s ( 0 [,) +∞ ) ) ∈ V )
172 rge0ssre ( 0 [,) +∞ ) ⊆ ℝ
173 ax-resscn ℝ ⊆ ℂ
174 172 173 sstri ( 0 [,) +∞ ) ⊆ ℂ
175 cnfldbas ℂ = ( Base ‘ ℂfld )
176 164 175 ressbas2 ( ( 0 [,) +∞ ) ⊆ ℂ → ( 0 [,) +∞ ) = ( Base ‘ ( ℂflds ( 0 [,) +∞ ) ) ) )
177 174 176 ax-mp ( 0 [,) +∞ ) = ( Base ‘ ( ℂflds ( 0 [,) +∞ ) ) )
178 177 eqcomi ( Base ‘ ( ℂflds ( 0 [,) +∞ ) ) ) = ( 0 [,) +∞ )
179 110 21 sstri ( 0 [,) +∞ ) ⊆ ℝ*
180 eqid ( ℝ*𝑠s ( 0 [,) +∞ ) ) = ( ℝ*𝑠s ( 0 [,) +∞ ) )
181 180 69 ressbas2 ( ( 0 [,) +∞ ) ⊆ ℝ* → ( 0 [,) +∞ ) = ( Base ‘ ( ℝ*𝑠s ( 0 [,) +∞ ) ) ) )
182 179 181 ax-mp ( 0 [,) +∞ ) = ( Base ‘ ( ℝ*𝑠s ( 0 [,) +∞ ) ) )
183 178 182 eqtri ( Base ‘ ( ℂflds ( 0 [,) +∞ ) ) ) = ( Base ‘ ( ℝ*𝑠s ( 0 [,) +∞ ) ) )
184 183 a1i ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) → ( Base ‘ ( ℂflds ( 0 [,) +∞ ) ) ) = ( Base ‘ ( ℝ*𝑠s ( 0 [,) +∞ ) ) ) )
185 rge0srg ( ℂflds ( 0 [,) +∞ ) ) ∈ SRing
186 185 a1i ( ( 𝑠 ∈ ( Base ‘ ( ℂflds ( 0 [,) +∞ ) ) ) ∧ 𝑡 ∈ ( Base ‘ ( ℂflds ( 0 [,) +∞ ) ) ) ) → ( ℂflds ( 0 [,) +∞ ) ) ∈ SRing )
187 simpl ( ( 𝑠 ∈ ( Base ‘ ( ℂflds ( 0 [,) +∞ ) ) ) ∧ 𝑡 ∈ ( Base ‘ ( ℂflds ( 0 [,) +∞ ) ) ) ) → 𝑠 ∈ ( Base ‘ ( ℂflds ( 0 [,) +∞ ) ) ) )
188 simpr ( ( 𝑠 ∈ ( Base ‘ ( ℂflds ( 0 [,) +∞ ) ) ) ∧ 𝑡 ∈ ( Base ‘ ( ℂflds ( 0 [,) +∞ ) ) ) ) → 𝑡 ∈ ( Base ‘ ( ℂflds ( 0 [,) +∞ ) ) ) )
189 eqid ( Base ‘ ( ℂflds ( 0 [,) +∞ ) ) ) = ( Base ‘ ( ℂflds ( 0 [,) +∞ ) ) )
190 eqid ( +g ‘ ( ℂflds ( 0 [,) +∞ ) ) ) = ( +g ‘ ( ℂflds ( 0 [,) +∞ ) ) )
191 189 190 srgacl ( ( ( ℂflds ( 0 [,) +∞ ) ) ∈ SRing ∧ 𝑠 ∈ ( Base ‘ ( ℂflds ( 0 [,) +∞ ) ) ) ∧ 𝑡 ∈ ( Base ‘ ( ℂflds ( 0 [,) +∞ ) ) ) ) → ( 𝑠 ( +g ‘ ( ℂflds ( 0 [,) +∞ ) ) ) 𝑡 ) ∈ ( Base ‘ ( ℂflds ( 0 [,) +∞ ) ) ) )
192 186 187 188 191 syl3anc ( ( 𝑠 ∈ ( Base ‘ ( ℂflds ( 0 [,) +∞ ) ) ) ∧ 𝑡 ∈ ( Base ‘ ( ℂflds ( 0 [,) +∞ ) ) ) ) → ( 𝑠 ( +g ‘ ( ℂflds ( 0 [,) +∞ ) ) ) 𝑡 ) ∈ ( Base ‘ ( ℂflds ( 0 [,) +∞ ) ) ) )
193 192 adantl ( ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) ∧ ( 𝑠 ∈ ( Base ‘ ( ℂflds ( 0 [,) +∞ ) ) ) ∧ 𝑡 ∈ ( Base ‘ ( ℂflds ( 0 [,) +∞ ) ) ) ) ) → ( 𝑠 ( +g ‘ ( ℂflds ( 0 [,) +∞ ) ) ) 𝑡 ) ∈ ( Base ‘ ( ℂflds ( 0 [,) +∞ ) ) ) )
194 172 a1i ( 𝑠 ∈ ( Base ‘ ( ℂflds ( 0 [,) +∞ ) ) ) → ( 0 [,) +∞ ) ⊆ ℝ )
195 id ( 𝑠 ∈ ( Base ‘ ( ℂflds ( 0 [,) +∞ ) ) ) → 𝑠 ∈ ( Base ‘ ( ℂflds ( 0 [,) +∞ ) ) ) )
196 195 178 eleqtrdi ( 𝑠 ∈ ( Base ‘ ( ℂflds ( 0 [,) +∞ ) ) ) → 𝑠 ∈ ( 0 [,) +∞ ) )
197 194 196 sseldd ( 𝑠 ∈ ( Base ‘ ( ℂflds ( 0 [,) +∞ ) ) ) → 𝑠 ∈ ℝ )
198 197 adantr ( ( 𝑠 ∈ ( Base ‘ ( ℂflds ( 0 [,) +∞ ) ) ) ∧ 𝑡 ∈ ( Base ‘ ( ℂflds ( 0 [,) +∞ ) ) ) ) → 𝑠 ∈ ℝ )
199 172 a1i ( 𝑡 ∈ ( Base ‘ ( ℂflds ( 0 [,) +∞ ) ) ) → ( 0 [,) +∞ ) ⊆ ℝ )
200 id ( 𝑡 ∈ ( Base ‘ ( ℂflds ( 0 [,) +∞ ) ) ) → 𝑡 ∈ ( Base ‘ ( ℂflds ( 0 [,) +∞ ) ) ) )
201 200 178 eleqtrdi ( 𝑡 ∈ ( Base ‘ ( ℂflds ( 0 [,) +∞ ) ) ) → 𝑡 ∈ ( 0 [,) +∞ ) )
202 199 201 sseldd ( 𝑡 ∈ ( Base ‘ ( ℂflds ( 0 [,) +∞ ) ) ) → 𝑡 ∈ ℝ )
203 202 adantl ( ( 𝑠 ∈ ( Base ‘ ( ℂflds ( 0 [,) +∞ ) ) ) ∧ 𝑡 ∈ ( Base ‘ ( ℂflds ( 0 [,) +∞ ) ) ) ) → 𝑡 ∈ ℝ )
204 rexadd ( ( 𝑠 ∈ ℝ ∧ 𝑡 ∈ ℝ ) → ( 𝑠 +𝑒 𝑡 ) = ( 𝑠 + 𝑡 ) )
205 204 eqcomd ( ( 𝑠 ∈ ℝ ∧ 𝑡 ∈ ℝ ) → ( 𝑠 + 𝑡 ) = ( 𝑠 +𝑒 𝑡 ) )
206 162 elexi ( 0 [,) +∞ ) ∈ V
207 cnfldadd + = ( +g ‘ ℂfld )
208 164 207 ressplusg ( ( 0 [,) +∞ ) ∈ V → + = ( +g ‘ ( ℂflds ( 0 [,) +∞ ) ) ) )
209 206 208 ax-mp + = ( +g ‘ ( ℂflds ( 0 [,) +∞ ) ) )
210 209 207 eqtr3i ( +g ‘ ( ℂflds ( 0 [,) +∞ ) ) ) = ( +g ‘ ℂfld )
211 210 207 eqtr4i ( +g ‘ ( ℂflds ( 0 [,) +∞ ) ) ) = +
212 211 oveqi ( 𝑠 ( +g ‘ ( ℂflds ( 0 [,) +∞ ) ) ) 𝑡 ) = ( 𝑠 + 𝑡 )
213 212 a1i ( ( 𝑠 ∈ ℝ ∧ 𝑡 ∈ ℝ ) → ( 𝑠 ( +g ‘ ( ℂflds ( 0 [,) +∞ ) ) ) 𝑡 ) = ( 𝑠 + 𝑡 ) )
214 180 104 ressplusg ( ( 0 [,) +∞ ) ∈ V → +𝑒 = ( +g ‘ ( ℝ*𝑠s ( 0 [,) +∞ ) ) ) )
215 206 214 ax-mp +𝑒 = ( +g ‘ ( ℝ*𝑠s ( 0 [,) +∞ ) ) )
216 215 eqcomi ( +g ‘ ( ℝ*𝑠s ( 0 [,) +∞ ) ) ) = +𝑒
217 216 oveqi ( 𝑠 ( +g ‘ ( ℝ*𝑠s ( 0 [,) +∞ ) ) ) 𝑡 ) = ( 𝑠 +𝑒 𝑡 )
218 217 a1i ( ( 𝑠 ∈ ℝ ∧ 𝑡 ∈ ℝ ) → ( 𝑠 ( +g ‘ ( ℝ*𝑠s ( 0 [,) +∞ ) ) ) 𝑡 ) = ( 𝑠 +𝑒 𝑡 ) )
219 205 213 218 3eqtr4d ( ( 𝑠 ∈ ℝ ∧ 𝑡 ∈ ℝ ) → ( 𝑠 ( +g ‘ ( ℂflds ( 0 [,) +∞ ) ) ) 𝑡 ) = ( 𝑠 ( +g ‘ ( ℝ*𝑠s ( 0 [,) +∞ ) ) ) 𝑡 ) )
220 198 203 219 syl2anc ( ( 𝑠 ∈ ( Base ‘ ( ℂflds ( 0 [,) +∞ ) ) ) ∧ 𝑡 ∈ ( Base ‘ ( ℂflds ( 0 [,) +∞ ) ) ) ) → ( 𝑠 ( +g ‘ ( ℂflds ( 0 [,) +∞ ) ) ) 𝑡 ) = ( 𝑠 ( +g ‘ ( ℝ*𝑠s ( 0 [,) +∞ ) ) ) 𝑡 ) )
221 220 adantl ( ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) ∧ ( 𝑠 ∈ ( Base ‘ ( ℂflds ( 0 [,) +∞ ) ) ) ∧ 𝑡 ∈ ( Base ‘ ( ℂflds ( 0 [,) +∞ ) ) ) ) ) → ( 𝑠 ( +g ‘ ( ℂflds ( 0 [,) +∞ ) ) ) 𝑡 ) = ( 𝑠 ( +g ‘ ( ℝ*𝑠s ( 0 [,) +∞ ) ) ) 𝑡 ) )
222 funmpt Fun ( 𝑦𝑥 ↦ ( 𝐹𝑦 ) )
223 222 a1i ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) → Fun ( 𝑦𝑥 ↦ ( 𝐹𝑦 ) ) )
224 150 177 eleqtrdi ( ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) ∧ 𝑦𝑥 ) → ( 𝐹𝑦 ) ∈ ( Base ‘ ( ℂflds ( 0 [,) +∞ ) ) ) )
225 224 ralrimiva ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) → ∀ 𝑦𝑥 ( 𝐹𝑦 ) ∈ ( Base ‘ ( ℂflds ( 0 [,) +∞ ) ) ) )
226 151 rnmptss ( ∀ 𝑦𝑥 ( 𝐹𝑦 ) ∈ ( Base ‘ ( ℂflds ( 0 [,) +∞ ) ) ) → ran ( 𝑦𝑥 ↦ ( 𝐹𝑦 ) ) ⊆ ( Base ‘ ( ℂflds ( 0 [,) +∞ ) ) ) )
227 225 226 syl ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) → ran ( 𝑦𝑥 ↦ ( 𝐹𝑦 ) ) ⊆ ( Base ‘ ( ℂflds ( 0 [,) +∞ ) ) ) )
228 169 170 171 184 193 221 223 227 gsumpropd2 ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) → ( ( ℂflds ( 0 [,) +∞ ) ) Σg ( 𝑦𝑥 ↦ ( 𝐹𝑦 ) ) ) = ( ( ℝ*𝑠s ( 0 [,) +∞ ) ) Σg ( 𝑦𝑥 ↦ ( 𝐹𝑦 ) ) ) )
229 165 166 228 3eqtrd ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) → ( ℂfld Σg ( 𝑦𝑥 ↦ ( 𝐹𝑦 ) ) ) = ( ( ℝ*𝑠s ( 0 [,) +∞ ) ) Σg ( 𝑦𝑥 ↦ ( 𝐹𝑦 ) ) ) )
230 30 adantl ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) → 𝑥 ∈ Fin )
231 148 recnd ( ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) ∧ 𝑦𝑥 ) → ( 𝐹𝑦 ) ∈ ℂ )
232 230 231 gsumfsum ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) → ( ℂfld Σg ( 𝑦𝑥 ↦ ( 𝐹𝑦 ) ) ) = Σ 𝑦𝑥 ( 𝐹𝑦 ) )
233 229 232 eqtr3d ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) → ( ( ℝ*𝑠s ( 0 [,) +∞ ) ) Σg ( 𝑦𝑥 ↦ ( 𝐹𝑦 ) ) ) = Σ 𝑦𝑥 ( 𝐹𝑦 ) )
234 101 161 233 3eqtrrd ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) → Σ 𝑦𝑥 ( 𝐹𝑦 ) = ( 𝐺 Σg ( 𝐹𝑥 ) ) )
235 234 mpteq2dva ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) → ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ Σ 𝑦𝑥 ( 𝐹𝑦 ) ) = ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( 𝐺 Σg ( 𝐹𝑥 ) ) ) )
236 235 rneqd ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) → ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ Σ 𝑦𝑥 ( 𝐹𝑦 ) ) = ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( 𝐺 Σg ( 𝐹𝑥 ) ) ) )
237 236 supeq1d ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) → sup ( ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ Σ 𝑦𝑥 ( 𝐹𝑦 ) ) , ℝ* , < ) = sup ( ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( 𝐺 Σg ( 𝐹𝑥 ) ) ) , ℝ* , < ) )
238 98 237 eqtrd ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) → ( Σ^𝐹 ) = sup ( ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( 𝐺 Σg ( 𝐹𝑥 ) ) ) , ℝ* , < ) )
239 93 238 pm2.61dan ( 𝜑 → ( Σ^𝐹 ) = sup ( ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( 𝐺 Σg ( 𝐹𝑥 ) ) ) , ℝ* , < ) )
240 1 2 3 4 xrge0tsms ( 𝜑 → ( 𝐺 tsums 𝐹 ) = { sup ( ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( 𝐺 Σg ( 𝐹𝑥 ) ) ) , ℝ* , < ) } )
241 239 240 eleq12d ( 𝜑 → ( ( Σ^𝐹 ) ∈ ( 𝐺 tsums 𝐹 ) ↔ sup ( ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( 𝐺 Σg ( 𝐹𝑥 ) ) ) , ℝ* , < ) ∈ { sup ( ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( 𝐺 Σg ( 𝐹𝑥 ) ) ) , ℝ* , < ) } ) )
242 11 241 mpbird ( 𝜑 → ( Σ^𝐹 ) ∈ ( 𝐺 tsums 𝐹 ) )