| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ssel | ⊢ ( 𝐴  ⊆  ℝ*  →  ( 𝑦  ∈  𝐴  →  𝑦  ∈  ℝ* ) ) | 
						
							| 2 |  | pnfnlt | ⊢ ( 𝑦  ∈  ℝ*  →  ¬  +∞  <  𝑦 ) | 
						
							| 3 | 1 2 | syl6 | ⊢ ( 𝐴  ⊆  ℝ*  →  ( 𝑦  ∈  𝐴  →  ¬  +∞  <  𝑦 ) ) | 
						
							| 4 | 3 | ralrimiv | ⊢ ( 𝐴  ⊆  ℝ*  →  ∀ 𝑦  ∈  𝐴 ¬  +∞  <  𝑦 ) | 
						
							| 5 |  | breq2 | ⊢ ( 𝑧  =  +∞  →  ( 𝑦  <  𝑧  ↔  𝑦  <  +∞ ) ) | 
						
							| 6 | 5 | rspcev | ⊢ ( ( +∞  ∈  𝐴  ∧  𝑦  <  +∞ )  →  ∃ 𝑧  ∈  𝐴 𝑦  <  𝑧 ) | 
						
							| 7 | 6 | ex | ⊢ ( +∞  ∈  𝐴  →  ( 𝑦  <  +∞  →  ∃ 𝑧  ∈  𝐴 𝑦  <  𝑧 ) ) | 
						
							| 8 | 7 | ralrimivw | ⊢ ( +∞  ∈  𝐴  →  ∀ 𝑦  ∈  ℝ ( 𝑦  <  +∞  →  ∃ 𝑧  ∈  𝐴 𝑦  <  𝑧 ) ) | 
						
							| 9 | 4 8 | anim12i | ⊢ ( ( 𝐴  ⊆  ℝ*  ∧  +∞  ∈  𝐴 )  →  ( ∀ 𝑦  ∈  𝐴 ¬  +∞  <  𝑦  ∧  ∀ 𝑦  ∈  ℝ ( 𝑦  <  +∞  →  ∃ 𝑧  ∈  𝐴 𝑦  <  𝑧 ) ) ) | 
						
							| 10 |  | pnfxr | ⊢ +∞  ∈  ℝ* | 
						
							| 11 |  | supxr | ⊢ ( ( ( 𝐴  ⊆  ℝ*  ∧  +∞  ∈  ℝ* )  ∧  ( ∀ 𝑦  ∈  𝐴 ¬  +∞  <  𝑦  ∧  ∀ 𝑦  ∈  ℝ ( 𝑦  <  +∞  →  ∃ 𝑧  ∈  𝐴 𝑦  <  𝑧 ) ) )  →  sup ( 𝐴 ,  ℝ* ,   <  )  =  +∞ ) | 
						
							| 12 | 10 11 | mpanl2 | ⊢ ( ( 𝐴  ⊆  ℝ*  ∧  ( ∀ 𝑦  ∈  𝐴 ¬  +∞  <  𝑦  ∧  ∀ 𝑦  ∈  ℝ ( 𝑦  <  +∞  →  ∃ 𝑧  ∈  𝐴 𝑦  <  𝑧 ) ) )  →  sup ( 𝐴 ,  ℝ* ,   <  )  =  +∞ ) | 
						
							| 13 | 9 12 | syldan | ⊢ ( ( 𝐴  ⊆  ℝ*  ∧  +∞  ∈  𝐴 )  →  sup ( 𝐴 ,  ℝ* ,   <  )  =  +∞ ) |