Metamath Proof Explorer


Theorem supxrpnf

Description: The supremum of a set of extended reals containing plus infinity is plus infinity. (Contributed by NM, 15-Oct-2005)

Ref Expression
Assertion supxrpnf A*+∞AsupA*<=+∞

Proof

Step Hyp Ref Expression
1 ssel A*yAy*
2 pnfnlt y*¬+∞<y
3 1 2 syl6 A*yA¬+∞<y
4 3 ralrimiv A*yA¬+∞<y
5 breq2 z=+∞y<zy<+∞
6 5 rspcev +∞Ay<+∞zAy<z
7 6 ex +∞Ay<+∞zAy<z
8 7 ralrimivw +∞Ayy<+∞zAy<z
9 4 8 anim12i A*+∞AyA¬+∞<yyy<+∞zAy<z
10 pnfxr +∞*
11 supxr A*+∞*yA¬+∞<yyy<+∞zAy<zsupA*<=+∞
12 10 11 mpanl2 A*yA¬+∞<yyy<+∞zAy<zsupA*<=+∞
13 9 12 syldan A*+∞AsupA*<=+∞