Metamath Proof Explorer


Theorem pnfnlt

Description: No extended real is greater than plus infinity. (Contributed by NM, 15-Oct-2005)

Ref Expression
Assertion pnfnlt A*¬+∞<A

Proof

Step Hyp Ref Expression
1 pnfnre +∞
2 1 neli ¬+∞
3 2 intnanr ¬+∞A
4 3 intnanr ¬+∞A+∞<A
5 pnfnemnf +∞−∞
6 5 neii ¬+∞=−∞
7 6 intnanr ¬+∞=−∞A=+∞
8 4 7 pm3.2ni ¬+∞A+∞<A+∞=−∞A=+∞
9 2 intnanr ¬+∞A=+∞
10 6 intnanr ¬+∞=−∞A
11 9 10 pm3.2ni ¬+∞A=+∞+∞=−∞A
12 8 11 pm3.2ni ¬+∞A+∞<A+∞=−∞A=+∞+∞A=+∞+∞=−∞A
13 pnfxr +∞*
14 ltxr +∞*A*+∞<A+∞A+∞<A+∞=−∞A=+∞+∞A=+∞+∞=−∞A
15 13 14 mpan A*+∞<A+∞A+∞<A+∞=−∞A=+∞+∞A=+∞+∞=−∞A
16 12 15 mtbiri A*¬+∞<A