| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sge0cl.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
| 2 |
|
sge0cl.f |
⊢ ( 𝜑 → 𝐹 : 𝑋 ⟶ ( 0 [,] +∞ ) ) |
| 3 |
|
fveq2 |
⊢ ( 𝐹 = ∅ → ( Σ^ ‘ 𝐹 ) = ( Σ^ ‘ ∅ ) ) |
| 4 |
|
sge00 |
⊢ ( Σ^ ‘ ∅ ) = 0 |
| 5 |
4
|
a1i |
⊢ ( 𝐹 = ∅ → ( Σ^ ‘ ∅ ) = 0 ) |
| 6 |
3 5
|
eqtrd |
⊢ ( 𝐹 = ∅ → ( Σ^ ‘ 𝐹 ) = 0 ) |
| 7 |
|
0e0iccpnf |
⊢ 0 ∈ ( 0 [,] +∞ ) |
| 8 |
7
|
a1i |
⊢ ( 𝐹 = ∅ → 0 ∈ ( 0 [,] +∞ ) ) |
| 9 |
6 8
|
eqeltrd |
⊢ ( 𝐹 = ∅ → ( Σ^ ‘ 𝐹 ) ∈ ( 0 [,] +∞ ) ) |
| 10 |
9
|
adantl |
⊢ ( ( 𝜑 ∧ 𝐹 = ∅ ) → ( Σ^ ‘ 𝐹 ) ∈ ( 0 [,] +∞ ) ) |
| 11 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ +∞ ∈ ran 𝐹 ) → 𝑋 ∈ 𝑉 ) |
| 12 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ +∞ ∈ ran 𝐹 ) → 𝐹 : 𝑋 ⟶ ( 0 [,] +∞ ) ) |
| 13 |
|
simpr |
⊢ ( ( 𝜑 ∧ +∞ ∈ ran 𝐹 ) → +∞ ∈ ran 𝐹 ) |
| 14 |
11 12 13
|
sge0pnfval |
⊢ ( ( 𝜑 ∧ +∞ ∈ ran 𝐹 ) → ( Σ^ ‘ 𝐹 ) = +∞ ) |
| 15 |
|
pnfel0pnf |
⊢ +∞ ∈ ( 0 [,] +∞ ) |
| 16 |
15
|
a1i |
⊢ ( ( 𝜑 ∧ +∞ ∈ ran 𝐹 ) → +∞ ∈ ( 0 [,] +∞ ) ) |
| 17 |
14 16
|
eqeltrd |
⊢ ( ( 𝜑 ∧ +∞ ∈ ran 𝐹 ) → ( Σ^ ‘ 𝐹 ) ∈ ( 0 [,] +∞ ) ) |
| 18 |
17
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ¬ 𝐹 = ∅ ) ∧ +∞ ∈ ran 𝐹 ) → ( Σ^ ‘ 𝐹 ) ∈ ( 0 [,] +∞ ) ) |
| 19 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ ¬ 𝐹 = ∅ ) ∧ ¬ +∞ ∈ ran 𝐹 ) → 𝜑 ) |
| 20 |
|
neqne |
⊢ ( ¬ 𝐹 = ∅ → 𝐹 ≠ ∅ ) |
| 21 |
20
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ ¬ 𝐹 = ∅ ) ∧ ¬ +∞ ∈ ran 𝐹 ) → 𝐹 ≠ ∅ ) |
| 22 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ¬ 𝐹 = ∅ ) ∧ ¬ +∞ ∈ ran 𝐹 ) → ¬ +∞ ∈ ran 𝐹 ) |
| 23 |
|
0xr |
⊢ 0 ∈ ℝ* |
| 24 |
23
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝐹 ≠ ∅ ) ∧ ¬ +∞ ∈ ran 𝐹 ) → 0 ∈ ℝ* ) |
| 25 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
| 26 |
25
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝐹 ≠ ∅ ) ∧ ¬ +∞ ∈ ran 𝐹 ) → +∞ ∈ ℝ* ) |
| 27 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) → 𝑋 ∈ 𝑉 ) |
| 28 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) → 𝐹 : 𝑋 ⟶ ( 0 [,] +∞ ) ) |
| 29 |
|
simpr |
⊢ ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) → ¬ +∞ ∈ ran 𝐹 ) |
| 30 |
28 29
|
fge0iccico |
⊢ ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) → 𝐹 : 𝑋 ⟶ ( 0 [,) +∞ ) ) |
| 31 |
27 30
|
sge0reval |
⊢ ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) → ( Σ^ ‘ 𝐹 ) = sup ( ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ) , ℝ* , < ) ) |
| 32 |
|
elinel2 |
⊢ ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) → 𝑥 ∈ Fin ) |
| 33 |
32
|
adantl |
⊢ ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) → 𝑥 ∈ Fin ) |
| 34 |
2
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) ∧ 𝑦 ∈ 𝑥 ) → 𝐹 : 𝑋 ⟶ ( 0 [,] +∞ ) ) |
| 35 |
|
elinel1 |
⊢ ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) → 𝑥 ∈ 𝒫 𝑋 ) |
| 36 |
|
elpwi |
⊢ ( 𝑥 ∈ 𝒫 𝑋 → 𝑥 ⊆ 𝑋 ) |
| 37 |
35 36
|
syl |
⊢ ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) → 𝑥 ⊆ 𝑋 ) |
| 38 |
37
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) → 𝑥 ⊆ 𝑋 ) |
| 39 |
38
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) ∧ 𝑦 ∈ 𝑥 ) → 𝑥 ⊆ 𝑋 ) |
| 40 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) ∧ 𝑦 ∈ 𝑥 ) → 𝑦 ∈ 𝑥 ) |
| 41 |
39 40
|
sseldd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) ∧ 𝑦 ∈ 𝑥 ) → 𝑦 ∈ 𝑋 ) |
| 42 |
34 41
|
ffvelcdmd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) ∧ 𝑦 ∈ 𝑥 ) → ( 𝐹 ‘ 𝑦 ) ∈ ( 0 [,] +∞ ) ) |
| 43 |
42
|
adantllr |
⊢ ( ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) ∧ 𝑦 ∈ 𝑥 ) → ( 𝐹 ‘ 𝑦 ) ∈ ( 0 [,] +∞ ) ) |
| 44 |
|
nne |
⊢ ( ¬ ( 𝐹 ‘ 𝑦 ) ≠ +∞ ↔ ( 𝐹 ‘ 𝑦 ) = +∞ ) |
| 45 |
44
|
biimpi |
⊢ ( ¬ ( 𝐹 ‘ 𝑦 ) ≠ +∞ → ( 𝐹 ‘ 𝑦 ) = +∞ ) |
| 46 |
45
|
eqcomd |
⊢ ( ¬ ( 𝐹 ‘ 𝑦 ) ≠ +∞ → +∞ = ( 𝐹 ‘ 𝑦 ) ) |
| 47 |
46
|
adantl |
⊢ ( ( ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ¬ ( 𝐹 ‘ 𝑦 ) ≠ +∞ ) → +∞ = ( 𝐹 ‘ 𝑦 ) ) |
| 48 |
2
|
ffund |
⊢ ( 𝜑 → Fun 𝐹 ) |
| 49 |
48
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ∧ 𝑦 ∈ 𝑥 ) → Fun 𝐹 ) |
| 50 |
41
|
3impa |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ∧ 𝑦 ∈ 𝑥 ) → 𝑦 ∈ 𝑋 ) |
| 51 |
2
|
fdmd |
⊢ ( 𝜑 → dom 𝐹 = 𝑋 ) |
| 52 |
51
|
eqcomd |
⊢ ( 𝜑 → 𝑋 = dom 𝐹 ) |
| 53 |
52
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ∧ 𝑦 ∈ 𝑥 ) → 𝑋 = dom 𝐹 ) |
| 54 |
50 53
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ∧ 𝑦 ∈ 𝑥 ) → 𝑦 ∈ dom 𝐹 ) |
| 55 |
|
fvelrn |
⊢ ( ( Fun 𝐹 ∧ 𝑦 ∈ dom 𝐹 ) → ( 𝐹 ‘ 𝑦 ) ∈ ran 𝐹 ) |
| 56 |
49 54 55
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ∧ 𝑦 ∈ 𝑥 ) → ( 𝐹 ‘ 𝑦 ) ∈ ran 𝐹 ) |
| 57 |
56
|
ad5ant134 |
⊢ ( ( ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ¬ ( 𝐹 ‘ 𝑦 ) ≠ +∞ ) → ( 𝐹 ‘ 𝑦 ) ∈ ran 𝐹 ) |
| 58 |
47 57
|
eqeltrd |
⊢ ( ( ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ¬ ( 𝐹 ‘ 𝑦 ) ≠ +∞ ) → +∞ ∈ ran 𝐹 ) |
| 59 |
29
|
ad3antrrr |
⊢ ( ( ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ ¬ ( 𝐹 ‘ 𝑦 ) ≠ +∞ ) → ¬ +∞ ∈ ran 𝐹 ) |
| 60 |
58 59
|
condan |
⊢ ( ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) ∧ 𝑦 ∈ 𝑥 ) → ( 𝐹 ‘ 𝑦 ) ≠ +∞ ) |
| 61 |
|
ge0xrre |
⊢ ( ( ( 𝐹 ‘ 𝑦 ) ∈ ( 0 [,] +∞ ) ∧ ( 𝐹 ‘ 𝑦 ) ≠ +∞ ) → ( 𝐹 ‘ 𝑦 ) ∈ ℝ ) |
| 62 |
43 60 61
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) ∧ 𝑦 ∈ 𝑥 ) → ( 𝐹 ‘ 𝑦 ) ∈ ℝ ) |
| 63 |
33 62
|
fsumrecl |
⊢ ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) → Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ∈ ℝ ) |
| 64 |
63
|
ralrimiva |
⊢ ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) → ∀ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ∈ ℝ ) |
| 65 |
|
eqid |
⊢ ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ) = ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ) |
| 66 |
65
|
rnmptss |
⊢ ( ∀ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ∈ ℝ → ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ) ⊆ ℝ ) |
| 67 |
64 66
|
syl |
⊢ ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) → ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ) ⊆ ℝ ) |
| 68 |
|
ressxr |
⊢ ℝ ⊆ ℝ* |
| 69 |
68
|
a1i |
⊢ ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) → ℝ ⊆ ℝ* ) |
| 70 |
67 69
|
sstrd |
⊢ ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) → ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ) ⊆ ℝ* ) |
| 71 |
|
supxrcl |
⊢ ( ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ) ⊆ ℝ* → sup ( ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ) , ℝ* , < ) ∈ ℝ* ) |
| 72 |
70 71
|
syl |
⊢ ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) → sup ( ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ) , ℝ* , < ) ∈ ℝ* ) |
| 73 |
31 72
|
eqeltrd |
⊢ ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) → ( Σ^ ‘ 𝐹 ) ∈ ℝ* ) |
| 74 |
73
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝐹 ≠ ∅ ) ∧ ¬ +∞ ∈ ran 𝐹 ) → ( Σ^ ‘ 𝐹 ) ∈ ℝ* ) |
| 75 |
52
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐹 ≠ ∅ ) → 𝑋 = dom 𝐹 ) |
| 76 |
|
neneq |
⊢ ( 𝐹 ≠ ∅ → ¬ 𝐹 = ∅ ) |
| 77 |
76
|
adantl |
⊢ ( ( 𝜑 ∧ 𝐹 ≠ ∅ ) → ¬ 𝐹 = ∅ ) |
| 78 |
|
frel |
⊢ ( 𝐹 : 𝑋 ⟶ ( 0 [,] +∞ ) → Rel 𝐹 ) |
| 79 |
2 78
|
syl |
⊢ ( 𝜑 → Rel 𝐹 ) |
| 80 |
79
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐹 ≠ ∅ ) → Rel 𝐹 ) |
| 81 |
|
reldm0 |
⊢ ( Rel 𝐹 → ( 𝐹 = ∅ ↔ dom 𝐹 = ∅ ) ) |
| 82 |
80 81
|
syl |
⊢ ( ( 𝜑 ∧ 𝐹 ≠ ∅ ) → ( 𝐹 = ∅ ↔ dom 𝐹 = ∅ ) ) |
| 83 |
77 82
|
mtbid |
⊢ ( ( 𝜑 ∧ 𝐹 ≠ ∅ ) → ¬ dom 𝐹 = ∅ ) |
| 84 |
83
|
neqned |
⊢ ( ( 𝜑 ∧ 𝐹 ≠ ∅ ) → dom 𝐹 ≠ ∅ ) |
| 85 |
75 84
|
eqnetrd |
⊢ ( ( 𝜑 ∧ 𝐹 ≠ ∅ ) → 𝑋 ≠ ∅ ) |
| 86 |
|
n0 |
⊢ ( 𝑋 ≠ ∅ ↔ ∃ 𝑧 𝑧 ∈ 𝑋 ) |
| 87 |
85 86
|
sylib |
⊢ ( ( 𝜑 ∧ 𝐹 ≠ ∅ ) → ∃ 𝑧 𝑧 ∈ 𝑋 ) |
| 88 |
87
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝐹 ≠ ∅ ) ∧ ¬ +∞ ∈ ran 𝐹 ) → ∃ 𝑧 𝑧 ∈ 𝑋 ) |
| 89 |
23
|
a1i |
⊢ ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) ∧ 𝑧 ∈ 𝑋 ) → 0 ∈ ℝ* ) |
| 90 |
2
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑋 ) → ( 𝐹 ‘ 𝑧 ) ∈ ( 0 [,] +∞ ) ) |
| 91 |
90
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) ∧ 𝑧 ∈ 𝑋 ) → ( 𝐹 ‘ 𝑧 ) ∈ ( 0 [,] +∞ ) ) |
| 92 |
|
nne |
⊢ ( ¬ ( 𝐹 ‘ 𝑧 ) ≠ +∞ ↔ ( 𝐹 ‘ 𝑧 ) = +∞ ) |
| 93 |
92
|
biimpi |
⊢ ( ¬ ( 𝐹 ‘ 𝑧 ) ≠ +∞ → ( 𝐹 ‘ 𝑧 ) = +∞ ) |
| 94 |
93
|
eqcomd |
⊢ ( ¬ ( 𝐹 ‘ 𝑧 ) ≠ +∞ → +∞ = ( 𝐹 ‘ 𝑧 ) ) |
| 95 |
94
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) ∧ 𝑧 ∈ 𝑋 ) ∧ ¬ ( 𝐹 ‘ 𝑧 ) ≠ +∞ ) → +∞ = ( 𝐹 ‘ 𝑧 ) ) |
| 96 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑋 ) → 𝐹 : 𝑋 ⟶ ( 0 [,] +∞ ) ) |
| 97 |
96
|
ffund |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑋 ) → Fun 𝐹 ) |
| 98 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑋 ) → 𝑧 ∈ 𝑋 ) |
| 99 |
52
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑋 ) → 𝑋 = dom 𝐹 ) |
| 100 |
98 99
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑋 ) → 𝑧 ∈ dom 𝐹 ) |
| 101 |
|
fvelrn |
⊢ ( ( Fun 𝐹 ∧ 𝑧 ∈ dom 𝐹 ) → ( 𝐹 ‘ 𝑧 ) ∈ ran 𝐹 ) |
| 102 |
97 100 101
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑋 ) → ( 𝐹 ‘ 𝑧 ) ∈ ran 𝐹 ) |
| 103 |
102
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) ∧ 𝑧 ∈ 𝑋 ) → ( 𝐹 ‘ 𝑧 ) ∈ ran 𝐹 ) |
| 104 |
103
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) ∧ 𝑧 ∈ 𝑋 ) ∧ ¬ ( 𝐹 ‘ 𝑧 ) ≠ +∞ ) → ( 𝐹 ‘ 𝑧 ) ∈ ran 𝐹 ) |
| 105 |
95 104
|
eqeltrd |
⊢ ( ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) ∧ 𝑧 ∈ 𝑋 ) ∧ ¬ ( 𝐹 ‘ 𝑧 ) ≠ +∞ ) → +∞ ∈ ran 𝐹 ) |
| 106 |
29
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) ∧ 𝑧 ∈ 𝑋 ) ∧ ¬ ( 𝐹 ‘ 𝑧 ) ≠ +∞ ) → ¬ +∞ ∈ ran 𝐹 ) |
| 107 |
105 106
|
condan |
⊢ ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) ∧ 𝑧 ∈ 𝑋 ) → ( 𝐹 ‘ 𝑧 ) ≠ +∞ ) |
| 108 |
|
ge0xrre |
⊢ ( ( ( 𝐹 ‘ 𝑧 ) ∈ ( 0 [,] +∞ ) ∧ ( 𝐹 ‘ 𝑧 ) ≠ +∞ ) → ( 𝐹 ‘ 𝑧 ) ∈ ℝ ) |
| 109 |
91 107 108
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) ∧ 𝑧 ∈ 𝑋 ) → ( 𝐹 ‘ 𝑧 ) ∈ ℝ ) |
| 110 |
109
|
rexrd |
⊢ ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) ∧ 𝑧 ∈ 𝑋 ) → ( 𝐹 ‘ 𝑧 ) ∈ ℝ* ) |
| 111 |
73
|
adantr |
⊢ ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) ∧ 𝑧 ∈ 𝑋 ) → ( Σ^ ‘ 𝐹 ) ∈ ℝ* ) |
| 112 |
23
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑋 ) → 0 ∈ ℝ* ) |
| 113 |
25
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑋 ) → +∞ ∈ ℝ* ) |
| 114 |
|
iccgelb |
⊢ ( ( 0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ ( 𝐹 ‘ 𝑧 ) ∈ ( 0 [,] +∞ ) ) → 0 ≤ ( 𝐹 ‘ 𝑧 ) ) |
| 115 |
112 113 90 114
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑋 ) → 0 ≤ ( 𝐹 ‘ 𝑧 ) ) |
| 116 |
115
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) ∧ 𝑧 ∈ 𝑋 ) → 0 ≤ ( 𝐹 ‘ 𝑧 ) ) |
| 117 |
70
|
adantr |
⊢ ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) ∧ 𝑧 ∈ 𝑋 ) → ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ) ⊆ ℝ* ) |
| 118 |
|
snelpwi |
⊢ ( 𝑧 ∈ 𝑋 → { 𝑧 } ∈ 𝒫 𝑋 ) |
| 119 |
|
snfi |
⊢ { 𝑧 } ∈ Fin |
| 120 |
119
|
a1i |
⊢ ( 𝑧 ∈ 𝑋 → { 𝑧 } ∈ Fin ) |
| 121 |
118 120
|
elind |
⊢ ( 𝑧 ∈ 𝑋 → { 𝑧 } ∈ ( 𝒫 𝑋 ∩ Fin ) ) |
| 122 |
121
|
adantl |
⊢ ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) ∧ 𝑧 ∈ 𝑋 ) → { 𝑧 } ∈ ( 𝒫 𝑋 ∩ Fin ) ) |
| 123 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) ∧ 𝑧 ∈ 𝑋 ) → 𝑧 ∈ 𝑋 ) |
| 124 |
109
|
recnd |
⊢ ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) ∧ 𝑧 ∈ 𝑋 ) → ( 𝐹 ‘ 𝑧 ) ∈ ℂ ) |
| 125 |
|
fveq2 |
⊢ ( 𝑦 = 𝑧 → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑧 ) ) |
| 126 |
125
|
sumsn |
⊢ ( ( 𝑧 ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑧 ) ∈ ℂ ) → Σ 𝑦 ∈ { 𝑧 } ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑧 ) ) |
| 127 |
123 124 126
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) ∧ 𝑧 ∈ 𝑋 ) → Σ 𝑦 ∈ { 𝑧 } ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑧 ) ) |
| 128 |
127
|
eqcomd |
⊢ ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) ∧ 𝑧 ∈ 𝑋 ) → ( 𝐹 ‘ 𝑧 ) = Σ 𝑦 ∈ { 𝑧 } ( 𝐹 ‘ 𝑦 ) ) |
| 129 |
|
sumeq1 |
⊢ ( 𝑥 = { 𝑧 } → Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) = Σ 𝑦 ∈ { 𝑧 } ( 𝐹 ‘ 𝑦 ) ) |
| 130 |
129
|
rspceeqv |
⊢ ( ( { 𝑧 } ∈ ( 𝒫 𝑋 ∩ Fin ) ∧ ( 𝐹 ‘ 𝑧 ) = Σ 𝑦 ∈ { 𝑧 } ( 𝐹 ‘ 𝑦 ) ) → ∃ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ( 𝐹 ‘ 𝑧 ) = Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ) |
| 131 |
122 128 130
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) ∧ 𝑧 ∈ 𝑋 ) → ∃ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ( 𝐹 ‘ 𝑧 ) = Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ) |
| 132 |
65
|
elrnmpt |
⊢ ( ( 𝐹 ‘ 𝑧 ) ∈ ( 0 [,] +∞ ) → ( ( 𝐹 ‘ 𝑧 ) ∈ ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ) ↔ ∃ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ( 𝐹 ‘ 𝑧 ) = Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ) ) |
| 133 |
91 132
|
syl |
⊢ ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) ∧ 𝑧 ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝑧 ) ∈ ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ) ↔ ∃ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ( 𝐹 ‘ 𝑧 ) = Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ) ) |
| 134 |
131 133
|
mpbird |
⊢ ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) ∧ 𝑧 ∈ 𝑋 ) → ( 𝐹 ‘ 𝑧 ) ∈ ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ) ) |
| 135 |
|
supxrub |
⊢ ( ( ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ) ⊆ ℝ* ∧ ( 𝐹 ‘ 𝑧 ) ∈ ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ) ) → ( 𝐹 ‘ 𝑧 ) ≤ sup ( ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ) , ℝ* , < ) ) |
| 136 |
117 134 135
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) ∧ 𝑧 ∈ 𝑋 ) → ( 𝐹 ‘ 𝑧 ) ≤ sup ( ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ) , ℝ* , < ) ) |
| 137 |
31
|
eqcomd |
⊢ ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) → sup ( ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ) , ℝ* , < ) = ( Σ^ ‘ 𝐹 ) ) |
| 138 |
137
|
adantr |
⊢ ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) ∧ 𝑧 ∈ 𝑋 ) → sup ( ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ) , ℝ* , < ) = ( Σ^ ‘ 𝐹 ) ) |
| 139 |
136 138
|
breqtrd |
⊢ ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) ∧ 𝑧 ∈ 𝑋 ) → ( 𝐹 ‘ 𝑧 ) ≤ ( Σ^ ‘ 𝐹 ) ) |
| 140 |
89 110 111 116 139
|
xrletrd |
⊢ ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) ∧ 𝑧 ∈ 𝑋 ) → 0 ≤ ( Σ^ ‘ 𝐹 ) ) |
| 141 |
140
|
ex |
⊢ ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) → ( 𝑧 ∈ 𝑋 → 0 ≤ ( Σ^ ‘ 𝐹 ) ) ) |
| 142 |
141
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝐹 ≠ ∅ ) ∧ ¬ +∞ ∈ ran 𝐹 ) → ( 𝑧 ∈ 𝑋 → 0 ≤ ( Σ^ ‘ 𝐹 ) ) ) |
| 143 |
142
|
exlimdv |
⊢ ( ( ( 𝜑 ∧ 𝐹 ≠ ∅ ) ∧ ¬ +∞ ∈ ran 𝐹 ) → ( ∃ 𝑧 𝑧 ∈ 𝑋 → 0 ≤ ( Σ^ ‘ 𝐹 ) ) ) |
| 144 |
88 143
|
mpd |
⊢ ( ( ( 𝜑 ∧ 𝐹 ≠ ∅ ) ∧ ¬ +∞ ∈ ran 𝐹 ) → 0 ≤ ( Σ^ ‘ 𝐹 ) ) |
| 145 |
|
pnfge |
⊢ ( ( Σ^ ‘ 𝐹 ) ∈ ℝ* → ( Σ^ ‘ 𝐹 ) ≤ +∞ ) |
| 146 |
73 145
|
syl |
⊢ ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) → ( Σ^ ‘ 𝐹 ) ≤ +∞ ) |
| 147 |
146
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝐹 ≠ ∅ ) ∧ ¬ +∞ ∈ ran 𝐹 ) → ( Σ^ ‘ 𝐹 ) ≤ +∞ ) |
| 148 |
24 26 74 144 147
|
eliccxrd |
⊢ ( ( ( 𝜑 ∧ 𝐹 ≠ ∅ ) ∧ ¬ +∞ ∈ ran 𝐹 ) → ( Σ^ ‘ 𝐹 ) ∈ ( 0 [,] +∞ ) ) |
| 149 |
19 21 22 148
|
syl21anc |
⊢ ( ( ( 𝜑 ∧ ¬ 𝐹 = ∅ ) ∧ ¬ +∞ ∈ ran 𝐹 ) → ( Σ^ ‘ 𝐹 ) ∈ ( 0 [,] +∞ ) ) |
| 150 |
18 149
|
pm2.61dan |
⊢ ( ( 𝜑 ∧ ¬ 𝐹 = ∅ ) → ( Σ^ ‘ 𝐹 ) ∈ ( 0 [,] +∞ ) ) |
| 151 |
10 150
|
pm2.61dan |
⊢ ( 𝜑 → ( Σ^ ‘ 𝐹 ) ∈ ( 0 [,] +∞ ) ) |