| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rge0ssre |
⊢ ( 0 [,) +∞ ) ⊆ ℝ |
| 2 |
|
0xr |
⊢ 0 ∈ ℝ* |
| 3 |
2
|
a1i |
⊢ ( ( 𝐴 ∈ ( 0 [,] +∞ ) ∧ 𝐴 ≠ +∞ ) → 0 ∈ ℝ* ) |
| 4 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
| 5 |
4
|
a1i |
⊢ ( ( 𝐴 ∈ ( 0 [,] +∞ ) ∧ 𝐴 ≠ +∞ ) → +∞ ∈ ℝ* ) |
| 6 |
|
eliccxr |
⊢ ( 𝐴 ∈ ( 0 [,] +∞ ) → 𝐴 ∈ ℝ* ) |
| 7 |
6
|
adantr |
⊢ ( ( 𝐴 ∈ ( 0 [,] +∞ ) ∧ 𝐴 ≠ +∞ ) → 𝐴 ∈ ℝ* ) |
| 8 |
2
|
a1i |
⊢ ( 𝐴 ∈ ( 0 [,] +∞ ) → 0 ∈ ℝ* ) |
| 9 |
4
|
a1i |
⊢ ( 𝐴 ∈ ( 0 [,] +∞ ) → +∞ ∈ ℝ* ) |
| 10 |
|
id |
⊢ ( 𝐴 ∈ ( 0 [,] +∞ ) → 𝐴 ∈ ( 0 [,] +∞ ) ) |
| 11 |
|
iccgelb |
⊢ ( ( 0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 𝐴 ∈ ( 0 [,] +∞ ) ) → 0 ≤ 𝐴 ) |
| 12 |
8 9 10 11
|
syl3anc |
⊢ ( 𝐴 ∈ ( 0 [,] +∞ ) → 0 ≤ 𝐴 ) |
| 13 |
12
|
adantr |
⊢ ( ( 𝐴 ∈ ( 0 [,] +∞ ) ∧ 𝐴 ≠ +∞ ) → 0 ≤ 𝐴 ) |
| 14 |
|
pnfge |
⊢ ( 𝐴 ∈ ℝ* → 𝐴 ≤ +∞ ) |
| 15 |
6 14
|
syl |
⊢ ( 𝐴 ∈ ( 0 [,] +∞ ) → 𝐴 ≤ +∞ ) |
| 16 |
15
|
adantr |
⊢ ( ( 𝐴 ∈ ( 0 [,] +∞ ) ∧ 𝐴 ≠ +∞ ) → 𝐴 ≤ +∞ ) |
| 17 |
|
simpr |
⊢ ( ( 𝐴 ∈ ( 0 [,] +∞ ) ∧ 𝐴 ≠ +∞ ) → 𝐴 ≠ +∞ ) |
| 18 |
7 5 16 17
|
xrleneltd |
⊢ ( ( 𝐴 ∈ ( 0 [,] +∞ ) ∧ 𝐴 ≠ +∞ ) → 𝐴 < +∞ ) |
| 19 |
3 5 7 13 18
|
elicod |
⊢ ( ( 𝐴 ∈ ( 0 [,] +∞ ) ∧ 𝐴 ≠ +∞ ) → 𝐴 ∈ ( 0 [,) +∞ ) ) |
| 20 |
1 19
|
sselid |
⊢ ( ( 𝐴 ∈ ( 0 [,] +∞ ) ∧ 𝐴 ≠ +∞ ) → 𝐴 ∈ ℝ ) |