| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rge0ssre |
|- ( 0 [,) +oo ) C_ RR |
| 2 |
|
0xr |
|- 0 e. RR* |
| 3 |
2
|
a1i |
|- ( ( A e. ( 0 [,] +oo ) /\ A =/= +oo ) -> 0 e. RR* ) |
| 4 |
|
pnfxr |
|- +oo e. RR* |
| 5 |
4
|
a1i |
|- ( ( A e. ( 0 [,] +oo ) /\ A =/= +oo ) -> +oo e. RR* ) |
| 6 |
|
eliccxr |
|- ( A e. ( 0 [,] +oo ) -> A e. RR* ) |
| 7 |
6
|
adantr |
|- ( ( A e. ( 0 [,] +oo ) /\ A =/= +oo ) -> A e. RR* ) |
| 8 |
2
|
a1i |
|- ( A e. ( 0 [,] +oo ) -> 0 e. RR* ) |
| 9 |
4
|
a1i |
|- ( A e. ( 0 [,] +oo ) -> +oo e. RR* ) |
| 10 |
|
id |
|- ( A e. ( 0 [,] +oo ) -> A e. ( 0 [,] +oo ) ) |
| 11 |
|
iccgelb |
|- ( ( 0 e. RR* /\ +oo e. RR* /\ A e. ( 0 [,] +oo ) ) -> 0 <_ A ) |
| 12 |
8 9 10 11
|
syl3anc |
|- ( A e. ( 0 [,] +oo ) -> 0 <_ A ) |
| 13 |
12
|
adantr |
|- ( ( A e. ( 0 [,] +oo ) /\ A =/= +oo ) -> 0 <_ A ) |
| 14 |
|
pnfge |
|- ( A e. RR* -> A <_ +oo ) |
| 15 |
6 14
|
syl |
|- ( A e. ( 0 [,] +oo ) -> A <_ +oo ) |
| 16 |
15
|
adantr |
|- ( ( A e. ( 0 [,] +oo ) /\ A =/= +oo ) -> A <_ +oo ) |
| 17 |
|
simpr |
|- ( ( A e. ( 0 [,] +oo ) /\ A =/= +oo ) -> A =/= +oo ) |
| 18 |
7 5 16 17
|
xrleneltd |
|- ( ( A e. ( 0 [,] +oo ) /\ A =/= +oo ) -> A < +oo ) |
| 19 |
3 5 7 13 18
|
elicod |
|- ( ( A e. ( 0 [,] +oo ) /\ A =/= +oo ) -> A e. ( 0 [,) +oo ) ) |
| 20 |
1 19
|
sselid |
|- ( ( A e. ( 0 [,] +oo ) /\ A =/= +oo ) -> A e. RR ) |