Metamath Proof Explorer


Theorem ge0lere

Description: A nonnegative extended Real number smaller than or equal to a Real number, is a Real number. (Contributed by Glauco Siliprandi, 24-Dec-2020)

Ref Expression
Hypotheses ge0lere.a
|- ( ph -> A e. RR )
ge0lere.b
|- ( ph -> B e. ( 0 [,] +oo ) )
ge0lere.l
|- ( ph -> B <_ A )
Assertion ge0lere
|- ( ph -> B e. RR )

Proof

Step Hyp Ref Expression
1 ge0lere.a
 |-  ( ph -> A e. RR )
2 ge0lere.b
 |-  ( ph -> B e. ( 0 [,] +oo ) )
3 ge0lere.l
 |-  ( ph -> B <_ A )
4 iccssxr
 |-  ( 0 [,] +oo ) C_ RR*
5 4 2 sseldi
 |-  ( ph -> B e. RR* )
6 pnfxr
 |-  +oo e. RR*
7 6 a1i
 |-  ( ph -> +oo e. RR* )
8 1 rexrd
 |-  ( ph -> A e. RR* )
9 1 ltpnfd
 |-  ( ph -> A < +oo )
10 5 8 7 3 9 xrlelttrd
 |-  ( ph -> B < +oo )
11 5 7 10 xrltned
 |-  ( ph -> B =/= +oo )
12 ge0xrre
 |-  ( ( B e. ( 0 [,] +oo ) /\ B =/= +oo ) -> B e. RR )
13 2 11 12 syl2anc
 |-  ( ph -> B e. RR )