Metamath Proof Explorer


Theorem ge0lere

Description: A nonnegative extended Real number smaller than or equal to a Real number, is a Real number. (Contributed by Glauco Siliprandi, 24-Dec-2020)

Ref Expression
Hypotheses ge0lere.a φA
ge0lere.b φB0+∞
ge0lere.l φBA
Assertion ge0lere φB

Proof

Step Hyp Ref Expression
1 ge0lere.a φA
2 ge0lere.b φB0+∞
3 ge0lere.l φBA
4 iccssxr 0+∞*
5 4 2 sselid φB*
6 pnfxr +∞*
7 6 a1i φ+∞*
8 1 rexrd φA*
9 1 ltpnfd φA<+∞
10 5 8 7 3 9 xrlelttrd φB<+∞
11 5 7 10 xrltned φB+∞
12 ge0xrre B0+∞B+∞B
13 2 11 12 syl2anc φB