Step |
Hyp |
Ref |
Expression |
1 |
|
sge0f1o.1 |
⊢ Ⅎ 𝑘 𝜑 |
2 |
|
sge0f1o.2 |
⊢ Ⅎ 𝑛 𝜑 |
3 |
|
sge0f1o.3 |
⊢ ( 𝑘 = 𝐺 → 𝐵 = 𝐷 ) |
4 |
|
sge0f1o.4 |
⊢ ( 𝜑 → 𝐶 ∈ 𝑉 ) |
5 |
|
sge0f1o.5 |
⊢ ( 𝜑 → 𝐹 : 𝐶 –1-1-onto→ 𝐴 ) |
6 |
|
sge0f1o.6 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐶 ) → ( 𝐹 ‘ 𝑛 ) = 𝐺 ) |
7 |
|
sge0f1o.7 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ( 0 [,] +∞ ) ) |
8 |
|
f1ofo |
⊢ ( 𝐹 : 𝐶 –1-1-onto→ 𝐴 → 𝐹 : 𝐶 –onto→ 𝐴 ) |
9 |
5 8
|
syl |
⊢ ( 𝜑 → 𝐹 : 𝐶 –onto→ 𝐴 ) |
10 |
|
fornex |
⊢ ( 𝐶 ∈ 𝑉 → ( 𝐹 : 𝐶 –onto→ 𝐴 → 𝐴 ∈ V ) ) |
11 |
4 9 10
|
sylc |
⊢ ( 𝜑 → 𝐴 ∈ V ) |
12 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ +∞ ∈ ran ( 𝑛 ∈ 𝐶 ↦ 𝐷 ) ) → 𝐴 ∈ V ) |
13 |
|
eqid |
⊢ ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) |
14 |
1 7 13
|
fmptdf |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) : 𝐴 ⟶ ( 0 [,] +∞ ) ) |
15 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ +∞ ∈ ran ( 𝑛 ∈ 𝐶 ↦ 𝐷 ) ) → ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) : 𝐴 ⟶ ( 0 [,] +∞ ) ) |
16 |
|
pnfex |
⊢ +∞ ∈ V |
17 |
|
eqid |
⊢ ( 𝑛 ∈ 𝐶 ↦ 𝐷 ) = ( 𝑛 ∈ 𝐶 ↦ 𝐷 ) |
18 |
17
|
elrnmpt |
⊢ ( +∞ ∈ V → ( +∞ ∈ ran ( 𝑛 ∈ 𝐶 ↦ 𝐷 ) ↔ ∃ 𝑛 ∈ 𝐶 +∞ = 𝐷 ) ) |
19 |
16 18
|
ax-mp |
⊢ ( +∞ ∈ ran ( 𝑛 ∈ 𝐶 ↦ 𝐷 ) ↔ ∃ 𝑛 ∈ 𝐶 +∞ = 𝐷 ) |
20 |
19
|
biimpi |
⊢ ( +∞ ∈ ran ( 𝑛 ∈ 𝐶 ↦ 𝐷 ) → ∃ 𝑛 ∈ 𝐶 +∞ = 𝐷 ) |
21 |
20
|
adantl |
⊢ ( ( 𝜑 ∧ +∞ ∈ ran ( 𝑛 ∈ 𝐶 ↦ 𝐷 ) ) → ∃ 𝑛 ∈ 𝐶 +∞ = 𝐷 ) |
22 |
|
nfv |
⊢ Ⅎ 𝑛 +∞ ∈ ran ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) |
23 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐶 ∧ +∞ = 𝐷 ) → +∞ = 𝐷 ) |
24 |
|
f1of |
⊢ ( 𝐹 : 𝐶 –1-1-onto→ 𝐴 → 𝐹 : 𝐶 ⟶ 𝐴 ) |
25 |
5 24
|
syl |
⊢ ( 𝜑 → 𝐹 : 𝐶 ⟶ 𝐴 ) |
26 |
25
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐶 ) → ( 𝐹 ‘ 𝑛 ) ∈ 𝐴 ) |
27 |
|
nfcv |
⊢ Ⅎ 𝑘 ( 𝐹 ‘ 𝑛 ) |
28 |
|
nfv |
⊢ Ⅎ 𝑘 ( 𝐹 ‘ 𝑛 ) = 𝐺 |
29 |
27
|
nfcsb1 |
⊢ Ⅎ 𝑘 ⦋ ( 𝐹 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 |
30 |
|
nfcv |
⊢ Ⅎ 𝑘 𝐷 |
31 |
29 30
|
nfeq |
⊢ Ⅎ 𝑘 ⦋ ( 𝐹 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 = 𝐷 |
32 |
28 31
|
nfim |
⊢ Ⅎ 𝑘 ( ( 𝐹 ‘ 𝑛 ) = 𝐺 → ⦋ ( 𝐹 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 = 𝐷 ) |
33 |
|
eqeq1 |
⊢ ( 𝑘 = ( 𝐹 ‘ 𝑛 ) → ( 𝑘 = 𝐺 ↔ ( 𝐹 ‘ 𝑛 ) = 𝐺 ) ) |
34 |
|
csbeq1a |
⊢ ( 𝑘 = ( 𝐹 ‘ 𝑛 ) → 𝐵 = ⦋ ( 𝐹 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) |
35 |
34
|
eqeq1d |
⊢ ( 𝑘 = ( 𝐹 ‘ 𝑛 ) → ( 𝐵 = 𝐷 ↔ ⦋ ( 𝐹 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 = 𝐷 ) ) |
36 |
33 35
|
imbi12d |
⊢ ( 𝑘 = ( 𝐹 ‘ 𝑛 ) → ( ( 𝑘 = 𝐺 → 𝐵 = 𝐷 ) ↔ ( ( 𝐹 ‘ 𝑛 ) = 𝐺 → ⦋ ( 𝐹 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 = 𝐷 ) ) ) |
37 |
27 32 36 3
|
vtoclgf |
⊢ ( ( 𝐹 ‘ 𝑛 ) ∈ 𝐴 → ( ( 𝐹 ‘ 𝑛 ) = 𝐺 → ⦋ ( 𝐹 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 = 𝐷 ) ) |
38 |
26 6 37
|
sylc |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐶 ) → ⦋ ( 𝐹 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 = 𝐷 ) |
39 |
38
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐶 ) → 𝐷 = ⦋ ( 𝐹 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) |
40 |
39
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐶 ∧ +∞ = 𝐷 ) → 𝐷 = ⦋ ( 𝐹 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) |
41 |
23 40
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐶 ∧ +∞ = 𝐷 ) → +∞ = ⦋ ( 𝐹 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) |
42 |
|
simpl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐶 ) → 𝜑 ) |
43 |
42 26
|
jca |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐶 ) → ( 𝜑 ∧ ( 𝐹 ‘ 𝑛 ) ∈ 𝐴 ) ) |
44 |
|
nfv |
⊢ Ⅎ 𝑘 ( 𝐹 ‘ 𝑛 ) ∈ 𝐴 |
45 |
1 44
|
nfan |
⊢ Ⅎ 𝑘 ( 𝜑 ∧ ( 𝐹 ‘ 𝑛 ) ∈ 𝐴 ) |
46 |
29
|
nfel1 |
⊢ Ⅎ 𝑘 ⦋ ( 𝐹 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ∈ ( 0 [,] +∞ ) |
47 |
45 46
|
nfim |
⊢ Ⅎ 𝑘 ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑛 ) ∈ 𝐴 ) → ⦋ ( 𝐹 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ∈ ( 0 [,] +∞ ) ) |
48 |
|
eleq1 |
⊢ ( 𝑘 = ( 𝐹 ‘ 𝑛 ) → ( 𝑘 ∈ 𝐴 ↔ ( 𝐹 ‘ 𝑛 ) ∈ 𝐴 ) ) |
49 |
48
|
anbi2d |
⊢ ( 𝑘 = ( 𝐹 ‘ 𝑛 ) → ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) ↔ ( 𝜑 ∧ ( 𝐹 ‘ 𝑛 ) ∈ 𝐴 ) ) ) |
50 |
34
|
eleq1d |
⊢ ( 𝑘 = ( 𝐹 ‘ 𝑛 ) → ( 𝐵 ∈ ( 0 [,] +∞ ) ↔ ⦋ ( 𝐹 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ∈ ( 0 [,] +∞ ) ) ) |
51 |
49 50
|
imbi12d |
⊢ ( 𝑘 = ( 𝐹 ‘ 𝑛 ) → ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ( 0 [,] +∞ ) ) ↔ ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑛 ) ∈ 𝐴 ) → ⦋ ( 𝐹 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ∈ ( 0 [,] +∞ ) ) ) ) |
52 |
27 47 51 7
|
vtoclgf |
⊢ ( ( 𝐹 ‘ 𝑛 ) ∈ 𝐴 → ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑛 ) ∈ 𝐴 ) → ⦋ ( 𝐹 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ∈ ( 0 [,] +∞ ) ) ) |
53 |
26 43 52
|
sylc |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐶 ) → ⦋ ( 𝐹 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ∈ ( 0 [,] +∞ ) ) |
54 |
29 13 34
|
elrnmpt1sf |
⊢ ( ( ( 𝐹 ‘ 𝑛 ) ∈ 𝐴 ∧ ⦋ ( 𝐹 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ∈ ( 0 [,] +∞ ) ) → ⦋ ( 𝐹 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ∈ ran ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ) |
55 |
26 53 54
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐶 ) → ⦋ ( 𝐹 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ∈ ran ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ) |
56 |
55
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐶 ∧ +∞ = 𝐷 ) → ⦋ ( 𝐹 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ∈ ran ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ) |
57 |
41 56
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐶 ∧ +∞ = 𝐷 ) → +∞ ∈ ran ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ) |
58 |
57
|
3exp |
⊢ ( 𝜑 → ( 𝑛 ∈ 𝐶 → ( +∞ = 𝐷 → +∞ ∈ ran ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ) ) ) |
59 |
2 22 58
|
rexlimd |
⊢ ( 𝜑 → ( ∃ 𝑛 ∈ 𝐶 +∞ = 𝐷 → +∞ ∈ ran ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ) ) |
60 |
59
|
adantr |
⊢ ( ( 𝜑 ∧ +∞ ∈ ran ( 𝑛 ∈ 𝐶 ↦ 𝐷 ) ) → ( ∃ 𝑛 ∈ 𝐶 +∞ = 𝐷 → +∞ ∈ ran ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ) ) |
61 |
21 60
|
mpd |
⊢ ( ( 𝜑 ∧ +∞ ∈ ran ( 𝑛 ∈ 𝐶 ↦ 𝐷 ) ) → +∞ ∈ ran ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ) |
62 |
12 15 61
|
sge0pnfval |
⊢ ( ( 𝜑 ∧ +∞ ∈ ran ( 𝑛 ∈ 𝐶 ↦ 𝐷 ) ) → ( Σ^ ‘ ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ) = +∞ ) |
63 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ +∞ ∈ ran ( 𝑛 ∈ 𝐶 ↦ 𝐷 ) ) → 𝐶 ∈ 𝑉 ) |
64 |
39 53
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐶 ) → 𝐷 ∈ ( 0 [,] +∞ ) ) |
65 |
2 64 17
|
fmptdf |
⊢ ( 𝜑 → ( 𝑛 ∈ 𝐶 ↦ 𝐷 ) : 𝐶 ⟶ ( 0 [,] +∞ ) ) |
66 |
65
|
adantr |
⊢ ( ( 𝜑 ∧ +∞ ∈ ran ( 𝑛 ∈ 𝐶 ↦ 𝐷 ) ) → ( 𝑛 ∈ 𝐶 ↦ 𝐷 ) : 𝐶 ⟶ ( 0 [,] +∞ ) ) |
67 |
|
simpr |
⊢ ( ( 𝜑 ∧ +∞ ∈ ran ( 𝑛 ∈ 𝐶 ↦ 𝐷 ) ) → +∞ ∈ ran ( 𝑛 ∈ 𝐶 ↦ 𝐷 ) ) |
68 |
63 66 67
|
sge0pnfval |
⊢ ( ( 𝜑 ∧ +∞ ∈ ran ( 𝑛 ∈ 𝐶 ↦ 𝐷 ) ) → ( Σ^ ‘ ( 𝑛 ∈ 𝐶 ↦ 𝐷 ) ) = +∞ ) |
69 |
62 68
|
eqtr4d |
⊢ ( ( 𝜑 ∧ +∞ ∈ ran ( 𝑛 ∈ 𝐶 ↦ 𝐷 ) ) → ( Σ^ ‘ ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ) = ( Σ^ ‘ ( 𝑛 ∈ 𝐶 ↦ 𝐷 ) ) ) |
70 |
|
sumex |
⊢ Σ 𝑘 ∈ 𝑦 𝐵 ∈ V |
71 |
70
|
a1i |
⊢ ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝑛 ∈ 𝐶 ↦ 𝐷 ) ) ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → Σ 𝑘 ∈ 𝑦 𝐵 ∈ V ) |
72 |
|
cnvimass |
⊢ ( ◡ 𝐹 “ 𝑦 ) ⊆ dom 𝐹 |
73 |
72 25
|
fssdm |
⊢ ( 𝜑 → ( ◡ 𝐹 “ 𝑦 ) ⊆ 𝐶 ) |
74 |
25 4
|
fexd |
⊢ ( 𝜑 → 𝐹 ∈ V ) |
75 |
|
cnvexg |
⊢ ( 𝐹 ∈ V → ◡ 𝐹 ∈ V ) |
76 |
74 75
|
syl |
⊢ ( 𝜑 → ◡ 𝐹 ∈ V ) |
77 |
|
imaexg |
⊢ ( ◡ 𝐹 ∈ V → ( ◡ 𝐹 “ 𝑦 ) ∈ V ) |
78 |
76 77
|
syl |
⊢ ( 𝜑 → ( ◡ 𝐹 “ 𝑦 ) ∈ V ) |
79 |
|
elpwg |
⊢ ( ( ◡ 𝐹 “ 𝑦 ) ∈ V → ( ( ◡ 𝐹 “ 𝑦 ) ∈ 𝒫 𝐶 ↔ ( ◡ 𝐹 “ 𝑦 ) ⊆ 𝐶 ) ) |
80 |
78 79
|
syl |
⊢ ( 𝜑 → ( ( ◡ 𝐹 “ 𝑦 ) ∈ 𝒫 𝐶 ↔ ( ◡ 𝐹 “ 𝑦 ) ⊆ 𝐶 ) ) |
81 |
73 80
|
mpbird |
⊢ ( 𝜑 → ( ◡ 𝐹 “ 𝑦 ) ∈ 𝒫 𝐶 ) |
82 |
81
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ( ◡ 𝐹 “ 𝑦 ) ∈ 𝒫 𝐶 ) |
83 |
|
f1ocnv |
⊢ ( 𝐹 : 𝐶 –1-1-onto→ 𝐴 → ◡ 𝐹 : 𝐴 –1-1-onto→ 𝐶 ) |
84 |
5 83
|
syl |
⊢ ( 𝜑 → ◡ 𝐹 : 𝐴 –1-1-onto→ 𝐶 ) |
85 |
|
f1ofun |
⊢ ( ◡ 𝐹 : 𝐴 –1-1-onto→ 𝐶 → Fun ◡ 𝐹 ) |
86 |
84 85
|
syl |
⊢ ( 𝜑 → Fun ◡ 𝐹 ) |
87 |
86
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → Fun ◡ 𝐹 ) |
88 |
|
elinel2 |
⊢ ( 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) → 𝑦 ∈ Fin ) |
89 |
88
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → 𝑦 ∈ Fin ) |
90 |
|
imafi |
⊢ ( ( Fun ◡ 𝐹 ∧ 𝑦 ∈ Fin ) → ( ◡ 𝐹 “ 𝑦 ) ∈ Fin ) |
91 |
87 89 90
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ( ◡ 𝐹 “ 𝑦 ) ∈ Fin ) |
92 |
82 91
|
elind |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ( ◡ 𝐹 “ 𝑦 ) ∈ ( 𝒫 𝐶 ∩ Fin ) ) |
93 |
92
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝑛 ∈ 𝐶 ↦ 𝐷 ) ) ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ( ◡ 𝐹 “ 𝑦 ) ∈ ( 𝒫 𝐶 ∩ Fin ) ) |
94 |
|
nfv |
⊢ Ⅎ 𝑘 ¬ +∞ ∈ ran ( 𝑛 ∈ 𝐶 ↦ 𝐷 ) |
95 |
1 94
|
nfan |
⊢ Ⅎ 𝑘 ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝑛 ∈ 𝐶 ↦ 𝐷 ) ) |
96 |
|
nfv |
⊢ Ⅎ 𝑘 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) |
97 |
95 96
|
nfan |
⊢ Ⅎ 𝑘 ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝑛 ∈ 𝐶 ↦ 𝐷 ) ) ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) |
98 |
|
nfcv |
⊢ Ⅎ 𝑛 +∞ |
99 |
|
nfmpt1 |
⊢ Ⅎ 𝑛 ( 𝑛 ∈ 𝐶 ↦ 𝐷 ) |
100 |
99
|
nfrn |
⊢ Ⅎ 𝑛 ran ( 𝑛 ∈ 𝐶 ↦ 𝐷 ) |
101 |
98 100
|
nfel |
⊢ Ⅎ 𝑛 +∞ ∈ ran ( 𝑛 ∈ 𝐶 ↦ 𝐷 ) |
102 |
101
|
nfn |
⊢ Ⅎ 𝑛 ¬ +∞ ∈ ran ( 𝑛 ∈ 𝐶 ↦ 𝐷 ) |
103 |
2 102
|
nfan |
⊢ Ⅎ 𝑛 ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝑛 ∈ 𝐶 ↦ 𝐷 ) ) |
104 |
|
nfv |
⊢ Ⅎ 𝑛 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) |
105 |
103 104
|
nfan |
⊢ Ⅎ 𝑛 ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝑛 ∈ 𝐶 ↦ 𝐷 ) ) ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) |
106 |
91
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝑛 ∈ 𝐶 ↦ 𝐷 ) ) ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ( ◡ 𝐹 “ 𝑦 ) ∈ Fin ) |
107 |
|
f1of1 |
⊢ ( 𝐹 : 𝐶 –1-1-onto→ 𝐴 → 𝐹 : 𝐶 –1-1→ 𝐴 ) |
108 |
5 107
|
syl |
⊢ ( 𝜑 → 𝐹 : 𝐶 –1-1→ 𝐴 ) |
109 |
108
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → 𝐹 : 𝐶 –1-1→ 𝐴 ) |
110 |
80
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ( ( ◡ 𝐹 “ 𝑦 ) ∈ 𝒫 𝐶 ↔ ( ◡ 𝐹 “ 𝑦 ) ⊆ 𝐶 ) ) |
111 |
82 110
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ( ◡ 𝐹 “ 𝑦 ) ⊆ 𝐶 ) |
112 |
|
f1ores |
⊢ ( ( 𝐹 : 𝐶 –1-1→ 𝐴 ∧ ( ◡ 𝐹 “ 𝑦 ) ⊆ 𝐶 ) → ( 𝐹 ↾ ( ◡ 𝐹 “ 𝑦 ) ) : ( ◡ 𝐹 “ 𝑦 ) –1-1-onto→ ( 𝐹 “ ( ◡ 𝐹 “ 𝑦 ) ) ) |
113 |
109 111 112
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ( 𝐹 ↾ ( ◡ 𝐹 “ 𝑦 ) ) : ( ◡ 𝐹 “ 𝑦 ) –1-1-onto→ ( 𝐹 “ ( ◡ 𝐹 “ 𝑦 ) ) ) |
114 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → 𝐹 : 𝐶 –onto→ 𝐴 ) |
115 |
|
elpwinss |
⊢ ( 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) → 𝑦 ⊆ 𝐴 ) |
116 |
115
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → 𝑦 ⊆ 𝐴 ) |
117 |
|
foimacnv |
⊢ ( ( 𝐹 : 𝐶 –onto→ 𝐴 ∧ 𝑦 ⊆ 𝐴 ) → ( 𝐹 “ ( ◡ 𝐹 “ 𝑦 ) ) = 𝑦 ) |
118 |
114 116 117
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ( 𝐹 “ ( ◡ 𝐹 “ 𝑦 ) ) = 𝑦 ) |
119 |
118
|
f1oeq3d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ( ( 𝐹 ↾ ( ◡ 𝐹 “ 𝑦 ) ) : ( ◡ 𝐹 “ 𝑦 ) –1-1-onto→ ( 𝐹 “ ( ◡ 𝐹 “ 𝑦 ) ) ↔ ( 𝐹 ↾ ( ◡ 𝐹 “ 𝑦 ) ) : ( ◡ 𝐹 “ 𝑦 ) –1-1-onto→ 𝑦 ) ) |
120 |
113 119
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ( 𝐹 ↾ ( ◡ 𝐹 “ 𝑦 ) ) : ( ◡ 𝐹 “ 𝑦 ) –1-1-onto→ 𝑦 ) |
121 |
120
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝑛 ∈ 𝐶 ↦ 𝐷 ) ) ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ( 𝐹 ↾ ( ◡ 𝐹 “ 𝑦 ) ) : ( ◡ 𝐹 “ 𝑦 ) –1-1-onto→ 𝑦 ) |
122 |
78
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) ∧ 𝑛 ∈ ( ◡ 𝐹 “ 𝑦 ) ) → ( ◡ 𝐹 “ 𝑦 ) ∈ V ) |
123 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) ∧ 𝑛 ∈ ( ◡ 𝐹 “ 𝑦 ) ) → 𝜑 ) |
124 |
92
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) ∧ 𝑛 ∈ ( ◡ 𝐹 “ 𝑦 ) ) → ( ◡ 𝐹 “ 𝑦 ) ∈ ( 𝒫 𝐶 ∩ Fin ) ) |
125 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) ∧ 𝑛 ∈ ( ◡ 𝐹 “ 𝑦 ) ) → 𝑛 ∈ ( ◡ 𝐹 “ 𝑦 ) ) |
126 |
123 124 125
|
jca31 |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) ∧ 𝑛 ∈ ( ◡ 𝐹 “ 𝑦 ) ) → ( ( 𝜑 ∧ ( ◡ 𝐹 “ 𝑦 ) ∈ ( 𝒫 𝐶 ∩ Fin ) ) ∧ 𝑛 ∈ ( ◡ 𝐹 “ 𝑦 ) ) ) |
127 |
|
eleq1 |
⊢ ( 𝑥 = ( ◡ 𝐹 “ 𝑦 ) → ( 𝑥 ∈ ( 𝒫 𝐶 ∩ Fin ) ↔ ( ◡ 𝐹 “ 𝑦 ) ∈ ( 𝒫 𝐶 ∩ Fin ) ) ) |
128 |
127
|
anbi2d |
⊢ ( 𝑥 = ( ◡ 𝐹 “ 𝑦 ) → ( ( 𝜑 ∧ 𝑥 ∈ ( 𝒫 𝐶 ∩ Fin ) ) ↔ ( 𝜑 ∧ ( ◡ 𝐹 “ 𝑦 ) ∈ ( 𝒫 𝐶 ∩ Fin ) ) ) ) |
129 |
|
eleq2 |
⊢ ( 𝑥 = ( ◡ 𝐹 “ 𝑦 ) → ( 𝑛 ∈ 𝑥 ↔ 𝑛 ∈ ( ◡ 𝐹 “ 𝑦 ) ) ) |
130 |
128 129
|
anbi12d |
⊢ ( 𝑥 = ( ◡ 𝐹 “ 𝑦 ) → ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝒫 𝐶 ∩ Fin ) ) ∧ 𝑛 ∈ 𝑥 ) ↔ ( ( 𝜑 ∧ ( ◡ 𝐹 “ 𝑦 ) ∈ ( 𝒫 𝐶 ∩ Fin ) ) ∧ 𝑛 ∈ ( ◡ 𝐹 “ 𝑦 ) ) ) ) |
131 |
|
reseq2 |
⊢ ( 𝑥 = ( ◡ 𝐹 “ 𝑦 ) → ( 𝐹 ↾ 𝑥 ) = ( 𝐹 ↾ ( ◡ 𝐹 “ 𝑦 ) ) ) |
132 |
131
|
fveq1d |
⊢ ( 𝑥 = ( ◡ 𝐹 “ 𝑦 ) → ( ( 𝐹 ↾ 𝑥 ) ‘ 𝑛 ) = ( ( 𝐹 ↾ ( ◡ 𝐹 “ 𝑦 ) ) ‘ 𝑛 ) ) |
133 |
132
|
eqeq1d |
⊢ ( 𝑥 = ( ◡ 𝐹 “ 𝑦 ) → ( ( ( 𝐹 ↾ 𝑥 ) ‘ 𝑛 ) = 𝐺 ↔ ( ( 𝐹 ↾ ( ◡ 𝐹 “ 𝑦 ) ) ‘ 𝑛 ) = 𝐺 ) ) |
134 |
130 133
|
imbi12d |
⊢ ( 𝑥 = ( ◡ 𝐹 “ 𝑦 ) → ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝒫 𝐶 ∩ Fin ) ) ∧ 𝑛 ∈ 𝑥 ) → ( ( 𝐹 ↾ 𝑥 ) ‘ 𝑛 ) = 𝐺 ) ↔ ( ( ( 𝜑 ∧ ( ◡ 𝐹 “ 𝑦 ) ∈ ( 𝒫 𝐶 ∩ Fin ) ) ∧ 𝑛 ∈ ( ◡ 𝐹 “ 𝑦 ) ) → ( ( 𝐹 ↾ ( ◡ 𝐹 “ 𝑦 ) ) ‘ 𝑛 ) = 𝐺 ) ) ) |
135 |
|
fvres |
⊢ ( 𝑛 ∈ 𝑥 → ( ( 𝐹 ↾ 𝑥 ) ‘ 𝑛 ) = ( 𝐹 ‘ 𝑛 ) ) |
136 |
135
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝒫 𝐶 ∩ Fin ) ) ∧ 𝑛 ∈ 𝑥 ) → ( ( 𝐹 ↾ 𝑥 ) ‘ 𝑛 ) = ( 𝐹 ‘ 𝑛 ) ) |
137 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝒫 𝐶 ∩ Fin ) ) ∧ 𝑛 ∈ 𝑥 ) → 𝜑 ) |
138 |
|
elpwinss |
⊢ ( 𝑥 ∈ ( 𝒫 𝐶 ∩ Fin ) → 𝑥 ⊆ 𝐶 ) |
139 |
138
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝒫 𝐶 ∩ Fin ) ) → 𝑥 ⊆ 𝐶 ) |
140 |
139
|
sselda |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝒫 𝐶 ∩ Fin ) ) ∧ 𝑛 ∈ 𝑥 ) → 𝑛 ∈ 𝐶 ) |
141 |
137 140 6
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝒫 𝐶 ∩ Fin ) ) ∧ 𝑛 ∈ 𝑥 ) → ( 𝐹 ‘ 𝑛 ) = 𝐺 ) |
142 |
136 141
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝒫 𝐶 ∩ Fin ) ) ∧ 𝑛 ∈ 𝑥 ) → ( ( 𝐹 ↾ 𝑥 ) ‘ 𝑛 ) = 𝐺 ) |
143 |
134 142
|
vtoclg |
⊢ ( ( ◡ 𝐹 “ 𝑦 ) ∈ V → ( ( ( 𝜑 ∧ ( ◡ 𝐹 “ 𝑦 ) ∈ ( 𝒫 𝐶 ∩ Fin ) ) ∧ 𝑛 ∈ ( ◡ 𝐹 “ 𝑦 ) ) → ( ( 𝐹 ↾ ( ◡ 𝐹 “ 𝑦 ) ) ‘ 𝑛 ) = 𝐺 ) ) |
144 |
122 126 143
|
sylc |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) ∧ 𝑛 ∈ ( ◡ 𝐹 “ 𝑦 ) ) → ( ( 𝐹 ↾ ( ◡ 𝐹 “ 𝑦 ) ) ‘ 𝑛 ) = 𝐺 ) |
145 |
144
|
adantllr |
⊢ ( ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝑛 ∈ 𝐶 ↦ 𝐷 ) ) ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) ∧ 𝑛 ∈ ( ◡ 𝐹 “ 𝑦 ) ) → ( ( 𝐹 ↾ ( ◡ 𝐹 “ 𝑦 ) ) ‘ 𝑛 ) = 𝐺 ) |
146 |
78
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝑛 ∈ 𝐶 ↦ 𝐷 ) ) ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) ∧ 𝑘 ∈ 𝑦 ) → ( ◡ 𝐹 “ 𝑦 ) ∈ V ) |
147 |
|
simpll |
⊢ ( ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝑛 ∈ 𝐶 ↦ 𝐷 ) ) ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) ∧ 𝑘 ∈ 𝑦 ) → ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝑛 ∈ 𝐶 ↦ 𝐷 ) ) ) |
148 |
81
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝑛 ∈ 𝐶 ↦ 𝐷 ) ) ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) ∧ 𝑘 ∈ 𝑦 ) → ( ◡ 𝐹 “ 𝑦 ) ∈ 𝒫 𝐶 ) |
149 |
106
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝑛 ∈ 𝐶 ↦ 𝐷 ) ) ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) ∧ 𝑘 ∈ 𝑦 ) → ( ◡ 𝐹 “ 𝑦 ) ∈ Fin ) |
150 |
148 149
|
elind |
⊢ ( ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝑛 ∈ 𝐶 ↦ 𝐷 ) ) ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) ∧ 𝑘 ∈ 𝑦 ) → ( ◡ 𝐹 “ 𝑦 ) ∈ ( 𝒫 𝐶 ∩ Fin ) ) |
151 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) ∧ 𝑘 ∈ 𝑦 ) → 𝑘 ∈ 𝑦 ) |
152 |
118
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → 𝑦 = ( 𝐹 “ ( ◡ 𝐹 “ 𝑦 ) ) ) |
153 |
152
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) ∧ 𝑘 ∈ 𝑦 ) → 𝑦 = ( 𝐹 “ ( ◡ 𝐹 “ 𝑦 ) ) ) |
154 |
151 153
|
eleqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) ∧ 𝑘 ∈ 𝑦 ) → 𝑘 ∈ ( 𝐹 “ ( ◡ 𝐹 “ 𝑦 ) ) ) |
155 |
154
|
adantllr |
⊢ ( ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝑛 ∈ 𝐶 ↦ 𝐷 ) ) ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) ∧ 𝑘 ∈ 𝑦 ) → 𝑘 ∈ ( 𝐹 “ ( ◡ 𝐹 “ 𝑦 ) ) ) |
156 |
147 150 155
|
jca31 |
⊢ ( ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝑛 ∈ 𝐶 ↦ 𝐷 ) ) ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) ∧ 𝑘 ∈ 𝑦 ) → ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝑛 ∈ 𝐶 ↦ 𝐷 ) ) ∧ ( ◡ 𝐹 “ 𝑦 ) ∈ ( 𝒫 𝐶 ∩ Fin ) ) ∧ 𝑘 ∈ ( 𝐹 “ ( ◡ 𝐹 “ 𝑦 ) ) ) ) |
157 |
127
|
anbi2d |
⊢ ( 𝑥 = ( ◡ 𝐹 “ 𝑦 ) → ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝑛 ∈ 𝐶 ↦ 𝐷 ) ) ∧ 𝑥 ∈ ( 𝒫 𝐶 ∩ Fin ) ) ↔ ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝑛 ∈ 𝐶 ↦ 𝐷 ) ) ∧ ( ◡ 𝐹 “ 𝑦 ) ∈ ( 𝒫 𝐶 ∩ Fin ) ) ) ) |
158 |
|
imaeq2 |
⊢ ( 𝑥 = ( ◡ 𝐹 “ 𝑦 ) → ( 𝐹 “ 𝑥 ) = ( 𝐹 “ ( ◡ 𝐹 “ 𝑦 ) ) ) |
159 |
158
|
eleq2d |
⊢ ( 𝑥 = ( ◡ 𝐹 “ 𝑦 ) → ( 𝑘 ∈ ( 𝐹 “ 𝑥 ) ↔ 𝑘 ∈ ( 𝐹 “ ( ◡ 𝐹 “ 𝑦 ) ) ) ) |
160 |
157 159
|
anbi12d |
⊢ ( 𝑥 = ( ◡ 𝐹 “ 𝑦 ) → ( ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝑛 ∈ 𝐶 ↦ 𝐷 ) ) ∧ 𝑥 ∈ ( 𝒫 𝐶 ∩ Fin ) ) ∧ 𝑘 ∈ ( 𝐹 “ 𝑥 ) ) ↔ ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝑛 ∈ 𝐶 ↦ 𝐷 ) ) ∧ ( ◡ 𝐹 “ 𝑦 ) ∈ ( 𝒫 𝐶 ∩ Fin ) ) ∧ 𝑘 ∈ ( 𝐹 “ ( ◡ 𝐹 “ 𝑦 ) ) ) ) ) |
161 |
160
|
imbi1d |
⊢ ( 𝑥 = ( ◡ 𝐹 “ 𝑦 ) → ( ( ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝑛 ∈ 𝐶 ↦ 𝐷 ) ) ∧ 𝑥 ∈ ( 𝒫 𝐶 ∩ Fin ) ) ∧ 𝑘 ∈ ( 𝐹 “ 𝑥 ) ) → 𝐵 ∈ ℂ ) ↔ ( ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝑛 ∈ 𝐶 ↦ 𝐷 ) ) ∧ ( ◡ 𝐹 “ 𝑦 ) ∈ ( 𝒫 𝐶 ∩ Fin ) ) ∧ 𝑘 ∈ ( 𝐹 “ ( ◡ 𝐹 “ 𝑦 ) ) ) → 𝐵 ∈ ℂ ) ) ) |
162 |
|
rge0ssre |
⊢ ( 0 [,) +∞ ) ⊆ ℝ |
163 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
164 |
162 163
|
sstri |
⊢ ( 0 [,) +∞ ) ⊆ ℂ |
165 |
|
simplll |
⊢ ( ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝑛 ∈ 𝐶 ↦ 𝐷 ) ) ∧ 𝑥 ∈ ( 𝒫 𝐶 ∩ Fin ) ) ∧ 𝑘 ∈ ( 𝐹 “ 𝑥 ) ) → 𝜑 ) |
166 |
|
simpllr |
⊢ ( ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝑛 ∈ 𝐶 ↦ 𝐷 ) ) ∧ 𝑥 ∈ ( 𝒫 𝐶 ∩ Fin ) ) ∧ 𝑘 ∈ ( 𝐹 “ 𝑥 ) ) → ¬ +∞ ∈ ran ( 𝑛 ∈ 𝐶 ↦ 𝐷 ) ) |
167 |
|
fimass |
⊢ ( 𝐹 : 𝐶 ⟶ 𝐴 → ( 𝐹 “ 𝑥 ) ⊆ 𝐴 ) |
168 |
25 167
|
syl |
⊢ ( 𝜑 → ( 𝐹 “ 𝑥 ) ⊆ 𝐴 ) |
169 |
168
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝒫 𝐶 ∩ Fin ) ) ∧ 𝑘 ∈ ( 𝐹 “ 𝑥 ) ) → ( 𝐹 “ 𝑥 ) ⊆ 𝐴 ) |
170 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝒫 𝐶 ∩ Fin ) ) ∧ 𝑘 ∈ ( 𝐹 “ 𝑥 ) ) → 𝑘 ∈ ( 𝐹 “ 𝑥 ) ) |
171 |
169 170
|
sseldd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝒫 𝐶 ∩ Fin ) ) ∧ 𝑘 ∈ ( 𝐹 “ 𝑥 ) ) → 𝑘 ∈ 𝐴 ) |
172 |
171
|
adantllr |
⊢ ( ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝑛 ∈ 𝐶 ↦ 𝐷 ) ) ∧ 𝑥 ∈ ( 𝒫 𝐶 ∩ Fin ) ) ∧ 𝑘 ∈ ( 𝐹 “ 𝑥 ) ) → 𝑘 ∈ 𝐴 ) |
173 |
|
foelrni |
⊢ ( ( 𝐹 : 𝐶 –onto→ 𝐴 ∧ 𝑘 ∈ 𝐴 ) → ∃ 𝑛 ∈ 𝐶 ( 𝐹 ‘ 𝑛 ) = 𝑘 ) |
174 |
9 173
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ∃ 𝑛 ∈ 𝐶 ( 𝐹 ‘ 𝑛 ) = 𝑘 ) |
175 |
174
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝑛 ∈ 𝐶 ↦ 𝐷 ) ) ∧ 𝑘 ∈ 𝐴 ) → ∃ 𝑛 ∈ 𝐶 ( 𝐹 ‘ 𝑛 ) = 𝑘 ) |
176 |
|
nfv |
⊢ Ⅎ 𝑛 𝑘 ∈ 𝐴 |
177 |
103 176
|
nfan |
⊢ Ⅎ 𝑛 ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝑛 ∈ 𝐶 ↦ 𝐷 ) ) ∧ 𝑘 ∈ 𝐴 ) |
178 |
|
nfv |
⊢ Ⅎ 𝑛 𝐵 ∈ ( 0 [,) +∞ ) |
179 |
|
csbid |
⊢ ⦋ 𝑘 / 𝑘 ⦌ 𝐵 = 𝐵 |
180 |
179
|
eqcomi |
⊢ 𝐵 = ⦋ 𝑘 / 𝑘 ⦌ 𝐵 |
181 |
180
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐶 ∧ ( 𝐹 ‘ 𝑛 ) = 𝑘 ) → 𝐵 = ⦋ 𝑘 / 𝑘 ⦌ 𝐵 ) |
182 |
|
id |
⊢ ( ( 𝐹 ‘ 𝑛 ) = 𝑘 → ( 𝐹 ‘ 𝑛 ) = 𝑘 ) |
183 |
182
|
eqcomd |
⊢ ( ( 𝐹 ‘ 𝑛 ) = 𝑘 → 𝑘 = ( 𝐹 ‘ 𝑛 ) ) |
184 |
183
|
csbeq1d |
⊢ ( ( 𝐹 ‘ 𝑛 ) = 𝑘 → ⦋ 𝑘 / 𝑘 ⦌ 𝐵 = ⦋ ( 𝐹 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) |
185 |
184
|
3ad2ant3 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐶 ∧ ( 𝐹 ‘ 𝑛 ) = 𝑘 ) → ⦋ 𝑘 / 𝑘 ⦌ 𝐵 = ⦋ ( 𝐹 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) |
186 |
38
|
idi |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐶 ) → ⦋ ( 𝐹 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 = 𝐷 ) |
187 |
186
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐶 ∧ ( 𝐹 ‘ 𝑛 ) = 𝑘 ) → ⦋ ( 𝐹 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 = 𝐷 ) |
188 |
181 185 187
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐶 ∧ ( 𝐹 ‘ 𝑛 ) = 𝑘 ) → 𝐵 = 𝐷 ) |
189 |
188
|
3adant1r |
⊢ ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝑛 ∈ 𝐶 ↦ 𝐷 ) ) ∧ 𝑛 ∈ 𝐶 ∧ ( 𝐹 ‘ 𝑛 ) = 𝑘 ) → 𝐵 = 𝐷 ) |
190 |
|
0xr |
⊢ 0 ∈ ℝ* |
191 |
190
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝐶 ) ∧ ¬ 𝐷 ∈ ( 0 [,) +∞ ) ) → 0 ∈ ℝ* ) |
192 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
193 |
192
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝐶 ) ∧ ¬ 𝐷 ∈ ( 0 [,) +∞ ) ) → +∞ ∈ ℝ* ) |
194 |
64
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝐶 ) ∧ ¬ 𝐷 ∈ ( 0 [,) +∞ ) ) → 𝐷 ∈ ( 0 [,] +∞ ) ) |
195 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝐶 ) ∧ ¬ 𝐷 ∈ ( 0 [,) +∞ ) ) → ¬ 𝐷 ∈ ( 0 [,) +∞ ) ) |
196 |
191 193 194 195
|
eliccnelico |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝐶 ) ∧ ¬ 𝐷 ∈ ( 0 [,) +∞ ) ) → 𝐷 = +∞ ) |
197 |
196
|
eqcomd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝐶 ) ∧ ¬ 𝐷 ∈ ( 0 [,) +∞ ) ) → +∞ = 𝐷 ) |
198 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐶 ) → 𝑛 ∈ 𝐶 ) |
199 |
64
|
idi |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐶 ) → 𝐷 ∈ ( 0 [,] +∞ ) ) |
200 |
17
|
elrnmpt1 |
⊢ ( ( 𝑛 ∈ 𝐶 ∧ 𝐷 ∈ ( 0 [,] +∞ ) ) → 𝐷 ∈ ran ( 𝑛 ∈ 𝐶 ↦ 𝐷 ) ) |
201 |
198 199 200
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐶 ) → 𝐷 ∈ ran ( 𝑛 ∈ 𝐶 ↦ 𝐷 ) ) |
202 |
201
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝐶 ) ∧ ¬ 𝐷 ∈ ( 0 [,) +∞ ) ) → 𝐷 ∈ ran ( 𝑛 ∈ 𝐶 ↦ 𝐷 ) ) |
203 |
197 202
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝐶 ) ∧ ¬ 𝐷 ∈ ( 0 [,) +∞ ) ) → +∞ ∈ ran ( 𝑛 ∈ 𝐶 ↦ 𝐷 ) ) |
204 |
203
|
adantllr |
⊢ ( ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝑛 ∈ 𝐶 ↦ 𝐷 ) ) ∧ 𝑛 ∈ 𝐶 ) ∧ ¬ 𝐷 ∈ ( 0 [,) +∞ ) ) → +∞ ∈ ran ( 𝑛 ∈ 𝐶 ↦ 𝐷 ) ) |
205 |
|
simpllr |
⊢ ( ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝑛 ∈ 𝐶 ↦ 𝐷 ) ) ∧ 𝑛 ∈ 𝐶 ) ∧ ¬ 𝐷 ∈ ( 0 [,) +∞ ) ) → ¬ +∞ ∈ ran ( 𝑛 ∈ 𝐶 ↦ 𝐷 ) ) |
206 |
204 205
|
condan |
⊢ ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝑛 ∈ 𝐶 ↦ 𝐷 ) ) ∧ 𝑛 ∈ 𝐶 ) → 𝐷 ∈ ( 0 [,) +∞ ) ) |
207 |
206
|
3adant3 |
⊢ ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝑛 ∈ 𝐶 ↦ 𝐷 ) ) ∧ 𝑛 ∈ 𝐶 ∧ ( 𝐹 ‘ 𝑛 ) = 𝑘 ) → 𝐷 ∈ ( 0 [,) +∞ ) ) |
208 |
189 207
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝑛 ∈ 𝐶 ↦ 𝐷 ) ) ∧ 𝑛 ∈ 𝐶 ∧ ( 𝐹 ‘ 𝑛 ) = 𝑘 ) → 𝐵 ∈ ( 0 [,) +∞ ) ) |
209 |
208
|
3exp |
⊢ ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝑛 ∈ 𝐶 ↦ 𝐷 ) ) → ( 𝑛 ∈ 𝐶 → ( ( 𝐹 ‘ 𝑛 ) = 𝑘 → 𝐵 ∈ ( 0 [,) +∞ ) ) ) ) |
210 |
209
|
adantr |
⊢ ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝑛 ∈ 𝐶 ↦ 𝐷 ) ) ∧ 𝑘 ∈ 𝐴 ) → ( 𝑛 ∈ 𝐶 → ( ( 𝐹 ‘ 𝑛 ) = 𝑘 → 𝐵 ∈ ( 0 [,) +∞ ) ) ) ) |
211 |
177 178 210
|
rexlimd |
⊢ ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝑛 ∈ 𝐶 ↦ 𝐷 ) ) ∧ 𝑘 ∈ 𝐴 ) → ( ∃ 𝑛 ∈ 𝐶 ( 𝐹 ‘ 𝑛 ) = 𝑘 → 𝐵 ∈ ( 0 [,) +∞ ) ) ) |
212 |
175 211
|
mpd |
⊢ ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝑛 ∈ 𝐶 ↦ 𝐷 ) ) ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ( 0 [,) +∞ ) ) |
213 |
165 166 172 212
|
syl21anc |
⊢ ( ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝑛 ∈ 𝐶 ↦ 𝐷 ) ) ∧ 𝑥 ∈ ( 𝒫 𝐶 ∩ Fin ) ) ∧ 𝑘 ∈ ( 𝐹 “ 𝑥 ) ) → 𝐵 ∈ ( 0 [,) +∞ ) ) |
214 |
164 213
|
sselid |
⊢ ( ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝑛 ∈ 𝐶 ↦ 𝐷 ) ) ∧ 𝑥 ∈ ( 𝒫 𝐶 ∩ Fin ) ) ∧ 𝑘 ∈ ( 𝐹 “ 𝑥 ) ) → 𝐵 ∈ ℂ ) |
215 |
214
|
idi |
⊢ ( ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝑛 ∈ 𝐶 ↦ 𝐷 ) ) ∧ 𝑥 ∈ ( 𝒫 𝐶 ∩ Fin ) ) ∧ 𝑘 ∈ ( 𝐹 “ 𝑥 ) ) → 𝐵 ∈ ℂ ) |
216 |
161 215
|
vtoclg |
⊢ ( ( ◡ 𝐹 “ 𝑦 ) ∈ V → ( ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝑛 ∈ 𝐶 ↦ 𝐷 ) ) ∧ ( ◡ 𝐹 “ 𝑦 ) ∈ ( 𝒫 𝐶 ∩ Fin ) ) ∧ 𝑘 ∈ ( 𝐹 “ ( ◡ 𝐹 “ 𝑦 ) ) ) → 𝐵 ∈ ℂ ) ) |
217 |
146 156 216
|
sylc |
⊢ ( ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝑛 ∈ 𝐶 ↦ 𝐷 ) ) ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) ∧ 𝑘 ∈ 𝑦 ) → 𝐵 ∈ ℂ ) |
218 |
97 105 3 106 121 145 217
|
fsumf1of |
⊢ ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝑛 ∈ 𝐶 ↦ 𝐷 ) ) ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → Σ 𝑘 ∈ 𝑦 𝐵 = Σ 𝑛 ∈ ( ◡ 𝐹 “ 𝑦 ) 𝐷 ) |
219 |
|
sumeq1 |
⊢ ( 𝑥 = ( ◡ 𝐹 “ 𝑦 ) → Σ 𝑛 ∈ 𝑥 𝐷 = Σ 𝑛 ∈ ( ◡ 𝐹 “ 𝑦 ) 𝐷 ) |
220 |
219
|
rspceeqv |
⊢ ( ( ( ◡ 𝐹 “ 𝑦 ) ∈ ( 𝒫 𝐶 ∩ Fin ) ∧ Σ 𝑘 ∈ 𝑦 𝐵 = Σ 𝑛 ∈ ( ◡ 𝐹 “ 𝑦 ) 𝐷 ) → ∃ 𝑥 ∈ ( 𝒫 𝐶 ∩ Fin ) Σ 𝑘 ∈ 𝑦 𝐵 = Σ 𝑛 ∈ 𝑥 𝐷 ) |
221 |
93 218 220
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝑛 ∈ 𝐶 ↦ 𝐷 ) ) ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ∃ 𝑥 ∈ ( 𝒫 𝐶 ∩ Fin ) Σ 𝑘 ∈ 𝑦 𝐵 = Σ 𝑛 ∈ 𝑥 𝐷 ) |
222 |
71 221
|
rnmptssrn |
⊢ ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝑛 ∈ 𝐶 ↦ 𝐷 ) ) → ran ( 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑦 𝐵 ) ⊆ ran ( 𝑥 ∈ ( 𝒫 𝐶 ∩ Fin ) ↦ Σ 𝑛 ∈ 𝑥 𝐷 ) ) |
223 |
|
sumex |
⊢ Σ 𝑛 ∈ 𝑥 𝐷 ∈ V |
224 |
223
|
a1i |
⊢ ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝑛 ∈ 𝐶 ↦ 𝐷 ) ) ∧ 𝑥 ∈ ( 𝒫 𝐶 ∩ Fin ) ) → Σ 𝑛 ∈ 𝑥 𝐷 ∈ V ) |
225 |
11 168
|
ssexd |
⊢ ( 𝜑 → ( 𝐹 “ 𝑥 ) ∈ V ) |
226 |
|
elpwg |
⊢ ( ( 𝐹 “ 𝑥 ) ∈ V → ( ( 𝐹 “ 𝑥 ) ∈ 𝒫 𝐴 ↔ ( 𝐹 “ 𝑥 ) ⊆ 𝐴 ) ) |
227 |
225 226
|
syl |
⊢ ( 𝜑 → ( ( 𝐹 “ 𝑥 ) ∈ 𝒫 𝐴 ↔ ( 𝐹 “ 𝑥 ) ⊆ 𝐴 ) ) |
228 |
168 227
|
mpbird |
⊢ ( 𝜑 → ( 𝐹 “ 𝑥 ) ∈ 𝒫 𝐴 ) |
229 |
228
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝒫 𝐶 ∩ Fin ) ) → ( 𝐹 “ 𝑥 ) ∈ 𝒫 𝐴 ) |
230 |
25
|
ffund |
⊢ ( 𝜑 → Fun 𝐹 ) |
231 |
230
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝒫 𝐶 ∩ Fin ) ) → Fun 𝐹 ) |
232 |
|
elinel2 |
⊢ ( 𝑥 ∈ ( 𝒫 𝐶 ∩ Fin ) → 𝑥 ∈ Fin ) |
233 |
232
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝒫 𝐶 ∩ Fin ) ) → 𝑥 ∈ Fin ) |
234 |
|
imafi |
⊢ ( ( Fun 𝐹 ∧ 𝑥 ∈ Fin ) → ( 𝐹 “ 𝑥 ) ∈ Fin ) |
235 |
231 233 234
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝒫 𝐶 ∩ Fin ) ) → ( 𝐹 “ 𝑥 ) ∈ Fin ) |
236 |
229 235
|
elind |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝒫 𝐶 ∩ Fin ) ) → ( 𝐹 “ 𝑥 ) ∈ ( 𝒫 𝐴 ∩ Fin ) ) |
237 |
236
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝑛 ∈ 𝐶 ↦ 𝐷 ) ) ∧ 𝑥 ∈ ( 𝒫 𝐶 ∩ Fin ) ) → ( 𝐹 “ 𝑥 ) ∈ ( 𝒫 𝐴 ∩ Fin ) ) |
238 |
|
nfv |
⊢ Ⅎ 𝑘 𝑥 ∈ ( 𝒫 𝐶 ∩ Fin ) |
239 |
95 238
|
nfan |
⊢ Ⅎ 𝑘 ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝑛 ∈ 𝐶 ↦ 𝐷 ) ) ∧ 𝑥 ∈ ( 𝒫 𝐶 ∩ Fin ) ) |
240 |
|
nfv |
⊢ Ⅎ 𝑛 𝑥 ∈ ( 𝒫 𝐶 ∩ Fin ) |
241 |
103 240
|
nfan |
⊢ Ⅎ 𝑛 ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝑛 ∈ 𝐶 ↦ 𝐷 ) ) ∧ 𝑥 ∈ ( 𝒫 𝐶 ∩ Fin ) ) |
242 |
232
|
adantl |
⊢ ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝑛 ∈ 𝐶 ↦ 𝐷 ) ) ∧ 𝑥 ∈ ( 𝒫 𝐶 ∩ Fin ) ) → 𝑥 ∈ Fin ) |
243 |
108
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝒫 𝐶 ∩ Fin ) ) → 𝐹 : 𝐶 –1-1→ 𝐴 ) |
244 |
|
f1ores |
⊢ ( ( 𝐹 : 𝐶 –1-1→ 𝐴 ∧ 𝑥 ⊆ 𝐶 ) → ( 𝐹 ↾ 𝑥 ) : 𝑥 –1-1-onto→ ( 𝐹 “ 𝑥 ) ) |
245 |
243 139 244
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝒫 𝐶 ∩ Fin ) ) → ( 𝐹 ↾ 𝑥 ) : 𝑥 –1-1-onto→ ( 𝐹 “ 𝑥 ) ) |
246 |
245
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝑛 ∈ 𝐶 ↦ 𝐷 ) ) ∧ 𝑥 ∈ ( 𝒫 𝐶 ∩ Fin ) ) → ( 𝐹 ↾ 𝑥 ) : 𝑥 –1-1-onto→ ( 𝐹 “ 𝑥 ) ) |
247 |
142
|
adantllr |
⊢ ( ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝑛 ∈ 𝐶 ↦ 𝐷 ) ) ∧ 𝑥 ∈ ( 𝒫 𝐶 ∩ Fin ) ) ∧ 𝑛 ∈ 𝑥 ) → ( ( 𝐹 ↾ 𝑥 ) ‘ 𝑛 ) = 𝐺 ) |
248 |
239 241 3 242 246 247 214
|
fsumf1of |
⊢ ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝑛 ∈ 𝐶 ↦ 𝐷 ) ) ∧ 𝑥 ∈ ( 𝒫 𝐶 ∩ Fin ) ) → Σ 𝑘 ∈ ( 𝐹 “ 𝑥 ) 𝐵 = Σ 𝑛 ∈ 𝑥 𝐷 ) |
249 |
248
|
eqcomd |
⊢ ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝑛 ∈ 𝐶 ↦ 𝐷 ) ) ∧ 𝑥 ∈ ( 𝒫 𝐶 ∩ Fin ) ) → Σ 𝑛 ∈ 𝑥 𝐷 = Σ 𝑘 ∈ ( 𝐹 “ 𝑥 ) 𝐵 ) |
250 |
|
sumeq1 |
⊢ ( 𝑦 = ( 𝐹 “ 𝑥 ) → Σ 𝑘 ∈ 𝑦 𝐵 = Σ 𝑘 ∈ ( 𝐹 “ 𝑥 ) 𝐵 ) |
251 |
250
|
rspceeqv |
⊢ ( ( ( 𝐹 “ 𝑥 ) ∈ ( 𝒫 𝐴 ∩ Fin ) ∧ Σ 𝑛 ∈ 𝑥 𝐷 = Σ 𝑘 ∈ ( 𝐹 “ 𝑥 ) 𝐵 ) → ∃ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) Σ 𝑛 ∈ 𝑥 𝐷 = Σ 𝑘 ∈ 𝑦 𝐵 ) |
252 |
237 249 251
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝑛 ∈ 𝐶 ↦ 𝐷 ) ) ∧ 𝑥 ∈ ( 𝒫 𝐶 ∩ Fin ) ) → ∃ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) Σ 𝑛 ∈ 𝑥 𝐷 = Σ 𝑘 ∈ 𝑦 𝐵 ) |
253 |
224 252
|
rnmptssrn |
⊢ ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝑛 ∈ 𝐶 ↦ 𝐷 ) ) → ran ( 𝑥 ∈ ( 𝒫 𝐶 ∩ Fin ) ↦ Σ 𝑛 ∈ 𝑥 𝐷 ) ⊆ ran ( 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑦 𝐵 ) ) |
254 |
222 253
|
eqssd |
⊢ ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝑛 ∈ 𝐶 ↦ 𝐷 ) ) → ran ( 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑦 𝐵 ) = ran ( 𝑥 ∈ ( 𝒫 𝐶 ∩ Fin ) ↦ Σ 𝑛 ∈ 𝑥 𝐷 ) ) |
255 |
254
|
supeq1d |
⊢ ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝑛 ∈ 𝐶 ↦ 𝐷 ) ) → sup ( ran ( 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑦 𝐵 ) , ℝ* , < ) = sup ( ran ( 𝑥 ∈ ( 𝒫 𝐶 ∩ Fin ) ↦ Σ 𝑛 ∈ 𝑥 𝐷 ) , ℝ* , < ) ) |
256 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝑛 ∈ 𝐶 ↦ 𝐷 ) ) → 𝐴 ∈ V ) |
257 |
95 256 212
|
sge0revalmpt |
⊢ ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝑛 ∈ 𝐶 ↦ 𝐷 ) ) → ( Σ^ ‘ ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ) = sup ( ran ( 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑦 𝐵 ) , ℝ* , < ) ) |
258 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝑛 ∈ 𝐶 ↦ 𝐷 ) ) → 𝐶 ∈ 𝑉 ) |
259 |
103 258 206
|
sge0revalmpt |
⊢ ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝑛 ∈ 𝐶 ↦ 𝐷 ) ) → ( Σ^ ‘ ( 𝑛 ∈ 𝐶 ↦ 𝐷 ) ) = sup ( ran ( 𝑥 ∈ ( 𝒫 𝐶 ∩ Fin ) ↦ Σ 𝑛 ∈ 𝑥 𝐷 ) , ℝ* , < ) ) |
260 |
255 257 259
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝑛 ∈ 𝐶 ↦ 𝐷 ) ) → ( Σ^ ‘ ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ) = ( Σ^ ‘ ( 𝑛 ∈ 𝐶 ↦ 𝐷 ) ) ) |
261 |
69 260
|
pm2.61dan |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ) = ( Σ^ ‘ ( 𝑛 ∈ 𝐶 ↦ 𝐷 ) ) ) |