Metamath Proof Explorer


Theorem sge0f1o

Description: Re-index a nonnegative extended sum using a bijection. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses sge0f1o.1 𝑘 𝜑
sge0f1o.2 𝑛 𝜑
sge0f1o.3 ( 𝑘 = 𝐺𝐵 = 𝐷 )
sge0f1o.4 ( 𝜑𝐶𝑉 )
sge0f1o.5 ( 𝜑𝐹 : 𝐶1-1-onto𝐴 )
sge0f1o.6 ( ( 𝜑𝑛𝐶 ) → ( 𝐹𝑛 ) = 𝐺 )
sge0f1o.7 ( ( 𝜑𝑘𝐴 ) → 𝐵 ∈ ( 0 [,] +∞ ) )
Assertion sge0f1o ( 𝜑 → ( Σ^ ‘ ( 𝑘𝐴𝐵 ) ) = ( Σ^ ‘ ( 𝑛𝐶𝐷 ) ) )

Proof

Step Hyp Ref Expression
1 sge0f1o.1 𝑘 𝜑
2 sge0f1o.2 𝑛 𝜑
3 sge0f1o.3 ( 𝑘 = 𝐺𝐵 = 𝐷 )
4 sge0f1o.4 ( 𝜑𝐶𝑉 )
5 sge0f1o.5 ( 𝜑𝐹 : 𝐶1-1-onto𝐴 )
6 sge0f1o.6 ( ( 𝜑𝑛𝐶 ) → ( 𝐹𝑛 ) = 𝐺 )
7 sge0f1o.7 ( ( 𝜑𝑘𝐴 ) → 𝐵 ∈ ( 0 [,] +∞ ) )
8 f1ofo ( 𝐹 : 𝐶1-1-onto𝐴𝐹 : 𝐶onto𝐴 )
9 5 8 syl ( 𝜑𝐹 : 𝐶onto𝐴 )
10 fornex ( 𝐶𝑉 → ( 𝐹 : 𝐶onto𝐴𝐴 ∈ V ) )
11 4 9 10 sylc ( 𝜑𝐴 ∈ V )
12 11 adantr ( ( 𝜑 ∧ +∞ ∈ ran ( 𝑛𝐶𝐷 ) ) → 𝐴 ∈ V )
13 eqid ( 𝑘𝐴𝐵 ) = ( 𝑘𝐴𝐵 )
14 1 7 13 fmptdf ( 𝜑 → ( 𝑘𝐴𝐵 ) : 𝐴 ⟶ ( 0 [,] +∞ ) )
15 14 adantr ( ( 𝜑 ∧ +∞ ∈ ran ( 𝑛𝐶𝐷 ) ) → ( 𝑘𝐴𝐵 ) : 𝐴 ⟶ ( 0 [,] +∞ ) )
16 pnfex +∞ ∈ V
17 eqid ( 𝑛𝐶𝐷 ) = ( 𝑛𝐶𝐷 )
18 17 elrnmpt ( +∞ ∈ V → ( +∞ ∈ ran ( 𝑛𝐶𝐷 ) ↔ ∃ 𝑛𝐶 +∞ = 𝐷 ) )
19 16 18 ax-mp ( +∞ ∈ ran ( 𝑛𝐶𝐷 ) ↔ ∃ 𝑛𝐶 +∞ = 𝐷 )
20 19 biimpi ( +∞ ∈ ran ( 𝑛𝐶𝐷 ) → ∃ 𝑛𝐶 +∞ = 𝐷 )
21 20 adantl ( ( 𝜑 ∧ +∞ ∈ ran ( 𝑛𝐶𝐷 ) ) → ∃ 𝑛𝐶 +∞ = 𝐷 )
22 nfv 𝑛 +∞ ∈ ran ( 𝑘𝐴𝐵 )
23 simp3 ( ( 𝜑𝑛𝐶 ∧ +∞ = 𝐷 ) → +∞ = 𝐷 )
24 f1of ( 𝐹 : 𝐶1-1-onto𝐴𝐹 : 𝐶𝐴 )
25 5 24 syl ( 𝜑𝐹 : 𝐶𝐴 )
26 25 ffvelrnda ( ( 𝜑𝑛𝐶 ) → ( 𝐹𝑛 ) ∈ 𝐴 )
27 nfcv 𝑘 ( 𝐹𝑛 )
28 nfv 𝑘 ( 𝐹𝑛 ) = 𝐺
29 27 nfcsb1 𝑘 ( 𝐹𝑛 ) / 𝑘 𝐵
30 nfcv 𝑘 𝐷
31 29 30 nfeq 𝑘 ( 𝐹𝑛 ) / 𝑘 𝐵 = 𝐷
32 28 31 nfim 𝑘 ( ( 𝐹𝑛 ) = 𝐺 ( 𝐹𝑛 ) / 𝑘 𝐵 = 𝐷 )
33 eqeq1 ( 𝑘 = ( 𝐹𝑛 ) → ( 𝑘 = 𝐺 ↔ ( 𝐹𝑛 ) = 𝐺 ) )
34 csbeq1a ( 𝑘 = ( 𝐹𝑛 ) → 𝐵 = ( 𝐹𝑛 ) / 𝑘 𝐵 )
35 34 eqeq1d ( 𝑘 = ( 𝐹𝑛 ) → ( 𝐵 = 𝐷 ( 𝐹𝑛 ) / 𝑘 𝐵 = 𝐷 ) )
36 33 35 imbi12d ( 𝑘 = ( 𝐹𝑛 ) → ( ( 𝑘 = 𝐺𝐵 = 𝐷 ) ↔ ( ( 𝐹𝑛 ) = 𝐺 ( 𝐹𝑛 ) / 𝑘 𝐵 = 𝐷 ) ) )
37 27 32 36 3 vtoclgf ( ( 𝐹𝑛 ) ∈ 𝐴 → ( ( 𝐹𝑛 ) = 𝐺 ( 𝐹𝑛 ) / 𝑘 𝐵 = 𝐷 ) )
38 26 6 37 sylc ( ( 𝜑𝑛𝐶 ) → ( 𝐹𝑛 ) / 𝑘 𝐵 = 𝐷 )
39 38 eqcomd ( ( 𝜑𝑛𝐶 ) → 𝐷 = ( 𝐹𝑛 ) / 𝑘 𝐵 )
40 39 3adant3 ( ( 𝜑𝑛𝐶 ∧ +∞ = 𝐷 ) → 𝐷 = ( 𝐹𝑛 ) / 𝑘 𝐵 )
41 23 40 eqtrd ( ( 𝜑𝑛𝐶 ∧ +∞ = 𝐷 ) → +∞ = ( 𝐹𝑛 ) / 𝑘 𝐵 )
42 simpl ( ( 𝜑𝑛𝐶 ) → 𝜑 )
43 42 26 jca ( ( 𝜑𝑛𝐶 ) → ( 𝜑 ∧ ( 𝐹𝑛 ) ∈ 𝐴 ) )
44 nfv 𝑘 ( 𝐹𝑛 ) ∈ 𝐴
45 1 44 nfan 𝑘 ( 𝜑 ∧ ( 𝐹𝑛 ) ∈ 𝐴 )
46 29 nfel1 𝑘 ( 𝐹𝑛 ) / 𝑘 𝐵 ∈ ( 0 [,] +∞ )
47 45 46 nfim 𝑘 ( ( 𝜑 ∧ ( 𝐹𝑛 ) ∈ 𝐴 ) → ( 𝐹𝑛 ) / 𝑘 𝐵 ∈ ( 0 [,] +∞ ) )
48 eleq1 ( 𝑘 = ( 𝐹𝑛 ) → ( 𝑘𝐴 ↔ ( 𝐹𝑛 ) ∈ 𝐴 ) )
49 48 anbi2d ( 𝑘 = ( 𝐹𝑛 ) → ( ( 𝜑𝑘𝐴 ) ↔ ( 𝜑 ∧ ( 𝐹𝑛 ) ∈ 𝐴 ) ) )
50 34 eleq1d ( 𝑘 = ( 𝐹𝑛 ) → ( 𝐵 ∈ ( 0 [,] +∞ ) ↔ ( 𝐹𝑛 ) / 𝑘 𝐵 ∈ ( 0 [,] +∞ ) ) )
51 49 50 imbi12d ( 𝑘 = ( 𝐹𝑛 ) → ( ( ( 𝜑𝑘𝐴 ) → 𝐵 ∈ ( 0 [,] +∞ ) ) ↔ ( ( 𝜑 ∧ ( 𝐹𝑛 ) ∈ 𝐴 ) → ( 𝐹𝑛 ) / 𝑘 𝐵 ∈ ( 0 [,] +∞ ) ) ) )
52 27 47 51 7 vtoclgf ( ( 𝐹𝑛 ) ∈ 𝐴 → ( ( 𝜑 ∧ ( 𝐹𝑛 ) ∈ 𝐴 ) → ( 𝐹𝑛 ) / 𝑘 𝐵 ∈ ( 0 [,] +∞ ) ) )
53 26 43 52 sylc ( ( 𝜑𝑛𝐶 ) → ( 𝐹𝑛 ) / 𝑘 𝐵 ∈ ( 0 [,] +∞ ) )
54 29 13 34 elrnmpt1sf ( ( ( 𝐹𝑛 ) ∈ 𝐴 ( 𝐹𝑛 ) / 𝑘 𝐵 ∈ ( 0 [,] +∞ ) ) → ( 𝐹𝑛 ) / 𝑘 𝐵 ∈ ran ( 𝑘𝐴𝐵 ) )
55 26 53 54 syl2anc ( ( 𝜑𝑛𝐶 ) → ( 𝐹𝑛 ) / 𝑘 𝐵 ∈ ran ( 𝑘𝐴𝐵 ) )
56 55 3adant3 ( ( 𝜑𝑛𝐶 ∧ +∞ = 𝐷 ) → ( 𝐹𝑛 ) / 𝑘 𝐵 ∈ ran ( 𝑘𝐴𝐵 ) )
57 41 56 eqeltrd ( ( 𝜑𝑛𝐶 ∧ +∞ = 𝐷 ) → +∞ ∈ ran ( 𝑘𝐴𝐵 ) )
58 57 3exp ( 𝜑 → ( 𝑛𝐶 → ( +∞ = 𝐷 → +∞ ∈ ran ( 𝑘𝐴𝐵 ) ) ) )
59 2 22 58 rexlimd ( 𝜑 → ( ∃ 𝑛𝐶 +∞ = 𝐷 → +∞ ∈ ran ( 𝑘𝐴𝐵 ) ) )
60 59 adantr ( ( 𝜑 ∧ +∞ ∈ ran ( 𝑛𝐶𝐷 ) ) → ( ∃ 𝑛𝐶 +∞ = 𝐷 → +∞ ∈ ran ( 𝑘𝐴𝐵 ) ) )
61 21 60 mpd ( ( 𝜑 ∧ +∞ ∈ ran ( 𝑛𝐶𝐷 ) ) → +∞ ∈ ran ( 𝑘𝐴𝐵 ) )
62 12 15 61 sge0pnfval ( ( 𝜑 ∧ +∞ ∈ ran ( 𝑛𝐶𝐷 ) ) → ( Σ^ ‘ ( 𝑘𝐴𝐵 ) ) = +∞ )
63 4 adantr ( ( 𝜑 ∧ +∞ ∈ ran ( 𝑛𝐶𝐷 ) ) → 𝐶𝑉 )
64 39 53 eqeltrd ( ( 𝜑𝑛𝐶 ) → 𝐷 ∈ ( 0 [,] +∞ ) )
65 2 64 17 fmptdf ( 𝜑 → ( 𝑛𝐶𝐷 ) : 𝐶 ⟶ ( 0 [,] +∞ ) )
66 65 adantr ( ( 𝜑 ∧ +∞ ∈ ran ( 𝑛𝐶𝐷 ) ) → ( 𝑛𝐶𝐷 ) : 𝐶 ⟶ ( 0 [,] +∞ ) )
67 simpr ( ( 𝜑 ∧ +∞ ∈ ran ( 𝑛𝐶𝐷 ) ) → +∞ ∈ ran ( 𝑛𝐶𝐷 ) )
68 63 66 67 sge0pnfval ( ( 𝜑 ∧ +∞ ∈ ran ( 𝑛𝐶𝐷 ) ) → ( Σ^ ‘ ( 𝑛𝐶𝐷 ) ) = +∞ )
69 62 68 eqtr4d ( ( 𝜑 ∧ +∞ ∈ ran ( 𝑛𝐶𝐷 ) ) → ( Σ^ ‘ ( 𝑘𝐴𝐵 ) ) = ( Σ^ ‘ ( 𝑛𝐶𝐷 ) ) )
70 sumex Σ 𝑘𝑦 𝐵 ∈ V
71 70 a1i ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝑛𝐶𝐷 ) ) ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → Σ 𝑘𝑦 𝐵 ∈ V )
72 cnvimass ( 𝐹𝑦 ) ⊆ dom 𝐹
73 72 25 fssdm ( 𝜑 → ( 𝐹𝑦 ) ⊆ 𝐶 )
74 fex ( ( 𝐹 : 𝐶𝐴𝐶𝑉 ) → 𝐹 ∈ V )
75 25 4 74 syl2anc ( 𝜑𝐹 ∈ V )
76 cnvexg ( 𝐹 ∈ V → 𝐹 ∈ V )
77 75 76 syl ( 𝜑 𝐹 ∈ V )
78 imaexg ( 𝐹 ∈ V → ( 𝐹𝑦 ) ∈ V )
79 77 78 syl ( 𝜑 → ( 𝐹𝑦 ) ∈ V )
80 elpwg ( ( 𝐹𝑦 ) ∈ V → ( ( 𝐹𝑦 ) ∈ 𝒫 𝐶 ↔ ( 𝐹𝑦 ) ⊆ 𝐶 ) )
81 79 80 syl ( 𝜑 → ( ( 𝐹𝑦 ) ∈ 𝒫 𝐶 ↔ ( 𝐹𝑦 ) ⊆ 𝐶 ) )
82 73 81 mpbird ( 𝜑 → ( 𝐹𝑦 ) ∈ 𝒫 𝐶 )
83 82 adantr ( ( 𝜑𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ( 𝐹𝑦 ) ∈ 𝒫 𝐶 )
84 f1ocnv ( 𝐹 : 𝐶1-1-onto𝐴 𝐹 : 𝐴1-1-onto𝐶 )
85 5 84 syl ( 𝜑 𝐹 : 𝐴1-1-onto𝐶 )
86 f1ofun ( 𝐹 : 𝐴1-1-onto𝐶 → Fun 𝐹 )
87 85 86 syl ( 𝜑 → Fun 𝐹 )
88 87 adantr ( ( 𝜑𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → Fun 𝐹 )
89 elinel2 ( 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) → 𝑦 ∈ Fin )
90 89 adantl ( ( 𝜑𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → 𝑦 ∈ Fin )
91 imafi ( ( Fun 𝐹𝑦 ∈ Fin ) → ( 𝐹𝑦 ) ∈ Fin )
92 88 90 91 syl2anc ( ( 𝜑𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ( 𝐹𝑦 ) ∈ Fin )
93 83 92 elind ( ( 𝜑𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ( 𝐹𝑦 ) ∈ ( 𝒫 𝐶 ∩ Fin ) )
94 93 adantlr ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝑛𝐶𝐷 ) ) ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ( 𝐹𝑦 ) ∈ ( 𝒫 𝐶 ∩ Fin ) )
95 nfv 𝑘 ¬ +∞ ∈ ran ( 𝑛𝐶𝐷 )
96 1 95 nfan 𝑘 ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝑛𝐶𝐷 ) )
97 nfv 𝑘 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin )
98 96 97 nfan 𝑘 ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝑛𝐶𝐷 ) ) ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) )
99 nfcv 𝑛 +∞
100 nfmpt1 𝑛 ( 𝑛𝐶𝐷 )
101 100 nfrn 𝑛 ran ( 𝑛𝐶𝐷 )
102 99 101 nfel 𝑛 +∞ ∈ ran ( 𝑛𝐶𝐷 )
103 102 nfn 𝑛 ¬ +∞ ∈ ran ( 𝑛𝐶𝐷 )
104 2 103 nfan 𝑛 ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝑛𝐶𝐷 ) )
105 nfv 𝑛 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin )
106 104 105 nfan 𝑛 ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝑛𝐶𝐷 ) ) ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) )
107 92 adantlr ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝑛𝐶𝐷 ) ) ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ( 𝐹𝑦 ) ∈ Fin )
108 f1of1 ( 𝐹 : 𝐶1-1-onto𝐴𝐹 : 𝐶1-1𝐴 )
109 5 108 syl ( 𝜑𝐹 : 𝐶1-1𝐴 )
110 109 adantr ( ( 𝜑𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → 𝐹 : 𝐶1-1𝐴 )
111 81 adantr ( ( 𝜑𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ( ( 𝐹𝑦 ) ∈ 𝒫 𝐶 ↔ ( 𝐹𝑦 ) ⊆ 𝐶 ) )
112 83 111 mpbid ( ( 𝜑𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ( 𝐹𝑦 ) ⊆ 𝐶 )
113 f1ores ( ( 𝐹 : 𝐶1-1𝐴 ∧ ( 𝐹𝑦 ) ⊆ 𝐶 ) → ( 𝐹 ↾ ( 𝐹𝑦 ) ) : ( 𝐹𝑦 ) –1-1-onto→ ( 𝐹 “ ( 𝐹𝑦 ) ) )
114 110 112 113 syl2anc ( ( 𝜑𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ( 𝐹 ↾ ( 𝐹𝑦 ) ) : ( 𝐹𝑦 ) –1-1-onto→ ( 𝐹 “ ( 𝐹𝑦 ) ) )
115 9 adantr ( ( 𝜑𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → 𝐹 : 𝐶onto𝐴 )
116 elpwinss ( 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) → 𝑦𝐴 )
117 116 adantl ( ( 𝜑𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → 𝑦𝐴 )
118 foimacnv ( ( 𝐹 : 𝐶onto𝐴𝑦𝐴 ) → ( 𝐹 “ ( 𝐹𝑦 ) ) = 𝑦 )
119 115 117 118 syl2anc ( ( 𝜑𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ( 𝐹 “ ( 𝐹𝑦 ) ) = 𝑦 )
120 119 f1oeq3d ( ( 𝜑𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ( ( 𝐹 ↾ ( 𝐹𝑦 ) ) : ( 𝐹𝑦 ) –1-1-onto→ ( 𝐹 “ ( 𝐹𝑦 ) ) ↔ ( 𝐹 ↾ ( 𝐹𝑦 ) ) : ( 𝐹𝑦 ) –1-1-onto𝑦 ) )
121 114 120 mpbid ( ( 𝜑𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ( 𝐹 ↾ ( 𝐹𝑦 ) ) : ( 𝐹𝑦 ) –1-1-onto𝑦 )
122 121 adantlr ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝑛𝐶𝐷 ) ) ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ( 𝐹 ↾ ( 𝐹𝑦 ) ) : ( 𝐹𝑦 ) –1-1-onto𝑦 )
123 79 ad2antrr ( ( ( 𝜑𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) ∧ 𝑛 ∈ ( 𝐹𝑦 ) ) → ( 𝐹𝑦 ) ∈ V )
124 simpll ( ( ( 𝜑𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) ∧ 𝑛 ∈ ( 𝐹𝑦 ) ) → 𝜑 )
125 93 adantr ( ( ( 𝜑𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) ∧ 𝑛 ∈ ( 𝐹𝑦 ) ) → ( 𝐹𝑦 ) ∈ ( 𝒫 𝐶 ∩ Fin ) )
126 simpr ( ( ( 𝜑𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) ∧ 𝑛 ∈ ( 𝐹𝑦 ) ) → 𝑛 ∈ ( 𝐹𝑦 ) )
127 124 125 126 jca31 ( ( ( 𝜑𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) ∧ 𝑛 ∈ ( 𝐹𝑦 ) ) → ( ( 𝜑 ∧ ( 𝐹𝑦 ) ∈ ( 𝒫 𝐶 ∩ Fin ) ) ∧ 𝑛 ∈ ( 𝐹𝑦 ) ) )
128 eleq1 ( 𝑥 = ( 𝐹𝑦 ) → ( 𝑥 ∈ ( 𝒫 𝐶 ∩ Fin ) ↔ ( 𝐹𝑦 ) ∈ ( 𝒫 𝐶 ∩ Fin ) ) )
129 128 anbi2d ( 𝑥 = ( 𝐹𝑦 ) → ( ( 𝜑𝑥 ∈ ( 𝒫 𝐶 ∩ Fin ) ) ↔ ( 𝜑 ∧ ( 𝐹𝑦 ) ∈ ( 𝒫 𝐶 ∩ Fin ) ) ) )
130 eleq2 ( 𝑥 = ( 𝐹𝑦 ) → ( 𝑛𝑥𝑛 ∈ ( 𝐹𝑦 ) ) )
131 129 130 anbi12d ( 𝑥 = ( 𝐹𝑦 ) → ( ( ( 𝜑𝑥 ∈ ( 𝒫 𝐶 ∩ Fin ) ) ∧ 𝑛𝑥 ) ↔ ( ( 𝜑 ∧ ( 𝐹𝑦 ) ∈ ( 𝒫 𝐶 ∩ Fin ) ) ∧ 𝑛 ∈ ( 𝐹𝑦 ) ) ) )
132 reseq2 ( 𝑥 = ( 𝐹𝑦 ) → ( 𝐹𝑥 ) = ( 𝐹 ↾ ( 𝐹𝑦 ) ) )
133 132 fveq1d ( 𝑥 = ( 𝐹𝑦 ) → ( ( 𝐹𝑥 ) ‘ 𝑛 ) = ( ( 𝐹 ↾ ( 𝐹𝑦 ) ) ‘ 𝑛 ) )
134 133 eqeq1d ( 𝑥 = ( 𝐹𝑦 ) → ( ( ( 𝐹𝑥 ) ‘ 𝑛 ) = 𝐺 ↔ ( ( 𝐹 ↾ ( 𝐹𝑦 ) ) ‘ 𝑛 ) = 𝐺 ) )
135 131 134 imbi12d ( 𝑥 = ( 𝐹𝑦 ) → ( ( ( ( 𝜑𝑥 ∈ ( 𝒫 𝐶 ∩ Fin ) ) ∧ 𝑛𝑥 ) → ( ( 𝐹𝑥 ) ‘ 𝑛 ) = 𝐺 ) ↔ ( ( ( 𝜑 ∧ ( 𝐹𝑦 ) ∈ ( 𝒫 𝐶 ∩ Fin ) ) ∧ 𝑛 ∈ ( 𝐹𝑦 ) ) → ( ( 𝐹 ↾ ( 𝐹𝑦 ) ) ‘ 𝑛 ) = 𝐺 ) ) )
136 fvres ( 𝑛𝑥 → ( ( 𝐹𝑥 ) ‘ 𝑛 ) = ( 𝐹𝑛 ) )
137 136 adantl ( ( ( 𝜑𝑥 ∈ ( 𝒫 𝐶 ∩ Fin ) ) ∧ 𝑛𝑥 ) → ( ( 𝐹𝑥 ) ‘ 𝑛 ) = ( 𝐹𝑛 ) )
138 simpll ( ( ( 𝜑𝑥 ∈ ( 𝒫 𝐶 ∩ Fin ) ) ∧ 𝑛𝑥 ) → 𝜑 )
139 elpwinss ( 𝑥 ∈ ( 𝒫 𝐶 ∩ Fin ) → 𝑥𝐶 )
140 139 adantl ( ( 𝜑𝑥 ∈ ( 𝒫 𝐶 ∩ Fin ) ) → 𝑥𝐶 )
141 140 sselda ( ( ( 𝜑𝑥 ∈ ( 𝒫 𝐶 ∩ Fin ) ) ∧ 𝑛𝑥 ) → 𝑛𝐶 )
142 138 141 6 syl2anc ( ( ( 𝜑𝑥 ∈ ( 𝒫 𝐶 ∩ Fin ) ) ∧ 𝑛𝑥 ) → ( 𝐹𝑛 ) = 𝐺 )
143 137 142 eqtrd ( ( ( 𝜑𝑥 ∈ ( 𝒫 𝐶 ∩ Fin ) ) ∧ 𝑛𝑥 ) → ( ( 𝐹𝑥 ) ‘ 𝑛 ) = 𝐺 )
144 135 143 vtoclg ( ( 𝐹𝑦 ) ∈ V → ( ( ( 𝜑 ∧ ( 𝐹𝑦 ) ∈ ( 𝒫 𝐶 ∩ Fin ) ) ∧ 𝑛 ∈ ( 𝐹𝑦 ) ) → ( ( 𝐹 ↾ ( 𝐹𝑦 ) ) ‘ 𝑛 ) = 𝐺 ) )
145 123 127 144 sylc ( ( ( 𝜑𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) ∧ 𝑛 ∈ ( 𝐹𝑦 ) ) → ( ( 𝐹 ↾ ( 𝐹𝑦 ) ) ‘ 𝑛 ) = 𝐺 )
146 145 adantllr ( ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝑛𝐶𝐷 ) ) ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) ∧ 𝑛 ∈ ( 𝐹𝑦 ) ) → ( ( 𝐹 ↾ ( 𝐹𝑦 ) ) ‘ 𝑛 ) = 𝐺 )
147 79 ad3antrrr ( ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝑛𝐶𝐷 ) ) ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) ∧ 𝑘𝑦 ) → ( 𝐹𝑦 ) ∈ V )
148 simpll ( ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝑛𝐶𝐷 ) ) ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) ∧ 𝑘𝑦 ) → ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝑛𝐶𝐷 ) ) )
149 82 ad3antrrr ( ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝑛𝐶𝐷 ) ) ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) ∧ 𝑘𝑦 ) → ( 𝐹𝑦 ) ∈ 𝒫 𝐶 )
150 107 adantr ( ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝑛𝐶𝐷 ) ) ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) ∧ 𝑘𝑦 ) → ( 𝐹𝑦 ) ∈ Fin )
151 149 150 elind ( ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝑛𝐶𝐷 ) ) ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) ∧ 𝑘𝑦 ) → ( 𝐹𝑦 ) ∈ ( 𝒫 𝐶 ∩ Fin ) )
152 simpr ( ( ( 𝜑𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) ∧ 𝑘𝑦 ) → 𝑘𝑦 )
153 119 eqcomd ( ( 𝜑𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → 𝑦 = ( 𝐹 “ ( 𝐹𝑦 ) ) )
154 153 adantr ( ( ( 𝜑𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) ∧ 𝑘𝑦 ) → 𝑦 = ( 𝐹 “ ( 𝐹𝑦 ) ) )
155 152 154 eleqtrd ( ( ( 𝜑𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) ∧ 𝑘𝑦 ) → 𝑘 ∈ ( 𝐹 “ ( 𝐹𝑦 ) ) )
156 155 adantllr ( ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝑛𝐶𝐷 ) ) ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) ∧ 𝑘𝑦 ) → 𝑘 ∈ ( 𝐹 “ ( 𝐹𝑦 ) ) )
157 148 151 156 jca31 ( ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝑛𝐶𝐷 ) ) ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) ∧ 𝑘𝑦 ) → ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝑛𝐶𝐷 ) ) ∧ ( 𝐹𝑦 ) ∈ ( 𝒫 𝐶 ∩ Fin ) ) ∧ 𝑘 ∈ ( 𝐹 “ ( 𝐹𝑦 ) ) ) )
158 128 anbi2d ( 𝑥 = ( 𝐹𝑦 ) → ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝑛𝐶𝐷 ) ) ∧ 𝑥 ∈ ( 𝒫 𝐶 ∩ Fin ) ) ↔ ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝑛𝐶𝐷 ) ) ∧ ( 𝐹𝑦 ) ∈ ( 𝒫 𝐶 ∩ Fin ) ) ) )
159 imaeq2 ( 𝑥 = ( 𝐹𝑦 ) → ( 𝐹𝑥 ) = ( 𝐹 “ ( 𝐹𝑦 ) ) )
160 159 eleq2d ( 𝑥 = ( 𝐹𝑦 ) → ( 𝑘 ∈ ( 𝐹𝑥 ) ↔ 𝑘 ∈ ( 𝐹 “ ( 𝐹𝑦 ) ) ) )
161 158 160 anbi12d ( 𝑥 = ( 𝐹𝑦 ) → ( ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝑛𝐶𝐷 ) ) ∧ 𝑥 ∈ ( 𝒫 𝐶 ∩ Fin ) ) ∧ 𝑘 ∈ ( 𝐹𝑥 ) ) ↔ ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝑛𝐶𝐷 ) ) ∧ ( 𝐹𝑦 ) ∈ ( 𝒫 𝐶 ∩ Fin ) ) ∧ 𝑘 ∈ ( 𝐹 “ ( 𝐹𝑦 ) ) ) ) )
162 161 imbi1d ( 𝑥 = ( 𝐹𝑦 ) → ( ( ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝑛𝐶𝐷 ) ) ∧ 𝑥 ∈ ( 𝒫 𝐶 ∩ Fin ) ) ∧ 𝑘 ∈ ( 𝐹𝑥 ) ) → 𝐵 ∈ ℂ ) ↔ ( ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝑛𝐶𝐷 ) ) ∧ ( 𝐹𝑦 ) ∈ ( 𝒫 𝐶 ∩ Fin ) ) ∧ 𝑘 ∈ ( 𝐹 “ ( 𝐹𝑦 ) ) ) → 𝐵 ∈ ℂ ) ) )
163 rge0ssre ( 0 [,) +∞ ) ⊆ ℝ
164 ax-resscn ℝ ⊆ ℂ
165 163 164 sstri ( 0 [,) +∞ ) ⊆ ℂ
166 simplll ( ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝑛𝐶𝐷 ) ) ∧ 𝑥 ∈ ( 𝒫 𝐶 ∩ Fin ) ) ∧ 𝑘 ∈ ( 𝐹𝑥 ) ) → 𝜑 )
167 simpllr ( ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝑛𝐶𝐷 ) ) ∧ 𝑥 ∈ ( 𝒫 𝐶 ∩ Fin ) ) ∧ 𝑘 ∈ ( 𝐹𝑥 ) ) → ¬ +∞ ∈ ran ( 𝑛𝐶𝐷 ) )
168 fimass ( 𝐹 : 𝐶𝐴 → ( 𝐹𝑥 ) ⊆ 𝐴 )
169 25 168 syl ( 𝜑 → ( 𝐹𝑥 ) ⊆ 𝐴 )
170 169 ad2antrr ( ( ( 𝜑𝑥 ∈ ( 𝒫 𝐶 ∩ Fin ) ) ∧ 𝑘 ∈ ( 𝐹𝑥 ) ) → ( 𝐹𝑥 ) ⊆ 𝐴 )
171 simpr ( ( ( 𝜑𝑥 ∈ ( 𝒫 𝐶 ∩ Fin ) ) ∧ 𝑘 ∈ ( 𝐹𝑥 ) ) → 𝑘 ∈ ( 𝐹𝑥 ) )
172 170 171 sseldd ( ( ( 𝜑𝑥 ∈ ( 𝒫 𝐶 ∩ Fin ) ) ∧ 𝑘 ∈ ( 𝐹𝑥 ) ) → 𝑘𝐴 )
173 172 adantllr ( ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝑛𝐶𝐷 ) ) ∧ 𝑥 ∈ ( 𝒫 𝐶 ∩ Fin ) ) ∧ 𝑘 ∈ ( 𝐹𝑥 ) ) → 𝑘𝐴 )
174 foelrni ( ( 𝐹 : 𝐶onto𝐴𝑘𝐴 ) → ∃ 𝑛𝐶 ( 𝐹𝑛 ) = 𝑘 )
175 9 174 sylan ( ( 𝜑𝑘𝐴 ) → ∃ 𝑛𝐶 ( 𝐹𝑛 ) = 𝑘 )
176 175 adantlr ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝑛𝐶𝐷 ) ) ∧ 𝑘𝐴 ) → ∃ 𝑛𝐶 ( 𝐹𝑛 ) = 𝑘 )
177 nfv 𝑛 𝑘𝐴
178 104 177 nfan 𝑛 ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝑛𝐶𝐷 ) ) ∧ 𝑘𝐴 )
179 nfv 𝑛 𝐵 ∈ ( 0 [,) +∞ )
180 csbid 𝑘 / 𝑘 𝐵 = 𝐵
181 180 eqcomi 𝐵 = 𝑘 / 𝑘 𝐵
182 181 a1i ( ( 𝜑𝑛𝐶 ∧ ( 𝐹𝑛 ) = 𝑘 ) → 𝐵 = 𝑘 / 𝑘 𝐵 )
183 id ( ( 𝐹𝑛 ) = 𝑘 → ( 𝐹𝑛 ) = 𝑘 )
184 183 eqcomd ( ( 𝐹𝑛 ) = 𝑘𝑘 = ( 𝐹𝑛 ) )
185 184 csbeq1d ( ( 𝐹𝑛 ) = 𝑘 𝑘 / 𝑘 𝐵 = ( 𝐹𝑛 ) / 𝑘 𝐵 )
186 185 3ad2ant3 ( ( 𝜑𝑛𝐶 ∧ ( 𝐹𝑛 ) = 𝑘 ) → 𝑘 / 𝑘 𝐵 = ( 𝐹𝑛 ) / 𝑘 𝐵 )
187 38 idi ( ( 𝜑𝑛𝐶 ) → ( 𝐹𝑛 ) / 𝑘 𝐵 = 𝐷 )
188 187 3adant3 ( ( 𝜑𝑛𝐶 ∧ ( 𝐹𝑛 ) = 𝑘 ) → ( 𝐹𝑛 ) / 𝑘 𝐵 = 𝐷 )
189 182 186 188 3eqtrd ( ( 𝜑𝑛𝐶 ∧ ( 𝐹𝑛 ) = 𝑘 ) → 𝐵 = 𝐷 )
190 189 3adant1r ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝑛𝐶𝐷 ) ) ∧ 𝑛𝐶 ∧ ( 𝐹𝑛 ) = 𝑘 ) → 𝐵 = 𝐷 )
191 0xr 0 ∈ ℝ*
192 191 a1i ( ( ( 𝜑𝑛𝐶 ) ∧ ¬ 𝐷 ∈ ( 0 [,) +∞ ) ) → 0 ∈ ℝ* )
193 pnfxr +∞ ∈ ℝ*
194 193 a1i ( ( ( 𝜑𝑛𝐶 ) ∧ ¬ 𝐷 ∈ ( 0 [,) +∞ ) ) → +∞ ∈ ℝ* )
195 64 adantr ( ( ( 𝜑𝑛𝐶 ) ∧ ¬ 𝐷 ∈ ( 0 [,) +∞ ) ) → 𝐷 ∈ ( 0 [,] +∞ ) )
196 simpr ( ( ( 𝜑𝑛𝐶 ) ∧ ¬ 𝐷 ∈ ( 0 [,) +∞ ) ) → ¬ 𝐷 ∈ ( 0 [,) +∞ ) )
197 192 194 195 196 eliccnelico ( ( ( 𝜑𝑛𝐶 ) ∧ ¬ 𝐷 ∈ ( 0 [,) +∞ ) ) → 𝐷 = +∞ )
198 197 eqcomd ( ( ( 𝜑𝑛𝐶 ) ∧ ¬ 𝐷 ∈ ( 0 [,) +∞ ) ) → +∞ = 𝐷 )
199 simpr ( ( 𝜑𝑛𝐶 ) → 𝑛𝐶 )
200 64 idi ( ( 𝜑𝑛𝐶 ) → 𝐷 ∈ ( 0 [,] +∞ ) )
201 17 elrnmpt1 ( ( 𝑛𝐶𝐷 ∈ ( 0 [,] +∞ ) ) → 𝐷 ∈ ran ( 𝑛𝐶𝐷 ) )
202 199 200 201 syl2anc ( ( 𝜑𝑛𝐶 ) → 𝐷 ∈ ran ( 𝑛𝐶𝐷 ) )
203 202 adantr ( ( ( 𝜑𝑛𝐶 ) ∧ ¬ 𝐷 ∈ ( 0 [,) +∞ ) ) → 𝐷 ∈ ran ( 𝑛𝐶𝐷 ) )
204 198 203 eqeltrd ( ( ( 𝜑𝑛𝐶 ) ∧ ¬ 𝐷 ∈ ( 0 [,) +∞ ) ) → +∞ ∈ ran ( 𝑛𝐶𝐷 ) )
205 204 adantllr ( ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝑛𝐶𝐷 ) ) ∧ 𝑛𝐶 ) ∧ ¬ 𝐷 ∈ ( 0 [,) +∞ ) ) → +∞ ∈ ran ( 𝑛𝐶𝐷 ) )
206 simpllr ( ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝑛𝐶𝐷 ) ) ∧ 𝑛𝐶 ) ∧ ¬ 𝐷 ∈ ( 0 [,) +∞ ) ) → ¬ +∞ ∈ ran ( 𝑛𝐶𝐷 ) )
207 205 206 condan ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝑛𝐶𝐷 ) ) ∧ 𝑛𝐶 ) → 𝐷 ∈ ( 0 [,) +∞ ) )
208 207 3adant3 ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝑛𝐶𝐷 ) ) ∧ 𝑛𝐶 ∧ ( 𝐹𝑛 ) = 𝑘 ) → 𝐷 ∈ ( 0 [,) +∞ ) )
209 190 208 eqeltrd ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝑛𝐶𝐷 ) ) ∧ 𝑛𝐶 ∧ ( 𝐹𝑛 ) = 𝑘 ) → 𝐵 ∈ ( 0 [,) +∞ ) )
210 209 3exp ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝑛𝐶𝐷 ) ) → ( 𝑛𝐶 → ( ( 𝐹𝑛 ) = 𝑘𝐵 ∈ ( 0 [,) +∞ ) ) ) )
211 210 adantr ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝑛𝐶𝐷 ) ) ∧ 𝑘𝐴 ) → ( 𝑛𝐶 → ( ( 𝐹𝑛 ) = 𝑘𝐵 ∈ ( 0 [,) +∞ ) ) ) )
212 178 179 211 rexlimd ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝑛𝐶𝐷 ) ) ∧ 𝑘𝐴 ) → ( ∃ 𝑛𝐶 ( 𝐹𝑛 ) = 𝑘𝐵 ∈ ( 0 [,) +∞ ) ) )
213 176 212 mpd ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝑛𝐶𝐷 ) ) ∧ 𝑘𝐴 ) → 𝐵 ∈ ( 0 [,) +∞ ) )
214 166 167 173 213 syl21anc ( ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝑛𝐶𝐷 ) ) ∧ 𝑥 ∈ ( 𝒫 𝐶 ∩ Fin ) ) ∧ 𝑘 ∈ ( 𝐹𝑥 ) ) → 𝐵 ∈ ( 0 [,) +∞ ) )
215 165 214 sseldi ( ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝑛𝐶𝐷 ) ) ∧ 𝑥 ∈ ( 𝒫 𝐶 ∩ Fin ) ) ∧ 𝑘 ∈ ( 𝐹𝑥 ) ) → 𝐵 ∈ ℂ )
216 215 idi ( ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝑛𝐶𝐷 ) ) ∧ 𝑥 ∈ ( 𝒫 𝐶 ∩ Fin ) ) ∧ 𝑘 ∈ ( 𝐹𝑥 ) ) → 𝐵 ∈ ℂ )
217 162 216 vtoclg ( ( 𝐹𝑦 ) ∈ V → ( ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝑛𝐶𝐷 ) ) ∧ ( 𝐹𝑦 ) ∈ ( 𝒫 𝐶 ∩ Fin ) ) ∧ 𝑘 ∈ ( 𝐹 “ ( 𝐹𝑦 ) ) ) → 𝐵 ∈ ℂ ) )
218 147 157 217 sylc ( ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝑛𝐶𝐷 ) ) ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) ∧ 𝑘𝑦 ) → 𝐵 ∈ ℂ )
219 98 106 3 107 122 146 218 fsumf1of ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝑛𝐶𝐷 ) ) ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → Σ 𝑘𝑦 𝐵 = Σ 𝑛 ∈ ( 𝐹𝑦 ) 𝐷 )
220 sumeq1 ( 𝑥 = ( 𝐹𝑦 ) → Σ 𝑛𝑥 𝐷 = Σ 𝑛 ∈ ( 𝐹𝑦 ) 𝐷 )
221 220 rspceeqv ( ( ( 𝐹𝑦 ) ∈ ( 𝒫 𝐶 ∩ Fin ) ∧ Σ 𝑘𝑦 𝐵 = Σ 𝑛 ∈ ( 𝐹𝑦 ) 𝐷 ) → ∃ 𝑥 ∈ ( 𝒫 𝐶 ∩ Fin ) Σ 𝑘𝑦 𝐵 = Σ 𝑛𝑥 𝐷 )
222 94 219 221 syl2anc ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝑛𝐶𝐷 ) ) ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ∃ 𝑥 ∈ ( 𝒫 𝐶 ∩ Fin ) Σ 𝑘𝑦 𝐵 = Σ 𝑛𝑥 𝐷 )
223 71 222 rnmptssrn ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝑛𝐶𝐷 ) ) → ran ( 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑘𝑦 𝐵 ) ⊆ ran ( 𝑥 ∈ ( 𝒫 𝐶 ∩ Fin ) ↦ Σ 𝑛𝑥 𝐷 ) )
224 sumex Σ 𝑛𝑥 𝐷 ∈ V
225 224 a1i ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝑛𝐶𝐷 ) ) ∧ 𝑥 ∈ ( 𝒫 𝐶 ∩ Fin ) ) → Σ 𝑛𝑥 𝐷 ∈ V )
226 11 169 ssexd ( 𝜑 → ( 𝐹𝑥 ) ∈ V )
227 elpwg ( ( 𝐹𝑥 ) ∈ V → ( ( 𝐹𝑥 ) ∈ 𝒫 𝐴 ↔ ( 𝐹𝑥 ) ⊆ 𝐴 ) )
228 226 227 syl ( 𝜑 → ( ( 𝐹𝑥 ) ∈ 𝒫 𝐴 ↔ ( 𝐹𝑥 ) ⊆ 𝐴 ) )
229 169 228 mpbird ( 𝜑 → ( 𝐹𝑥 ) ∈ 𝒫 𝐴 )
230 229 adantr ( ( 𝜑𝑥 ∈ ( 𝒫 𝐶 ∩ Fin ) ) → ( 𝐹𝑥 ) ∈ 𝒫 𝐴 )
231 25 ffund ( 𝜑 → Fun 𝐹 )
232 231 adantr ( ( 𝜑𝑥 ∈ ( 𝒫 𝐶 ∩ Fin ) ) → Fun 𝐹 )
233 elinel2 ( 𝑥 ∈ ( 𝒫 𝐶 ∩ Fin ) → 𝑥 ∈ Fin )
234 233 adantl ( ( 𝜑𝑥 ∈ ( 𝒫 𝐶 ∩ Fin ) ) → 𝑥 ∈ Fin )
235 imafi ( ( Fun 𝐹𝑥 ∈ Fin ) → ( 𝐹𝑥 ) ∈ Fin )
236 232 234 235 syl2anc ( ( 𝜑𝑥 ∈ ( 𝒫 𝐶 ∩ Fin ) ) → ( 𝐹𝑥 ) ∈ Fin )
237 230 236 elind ( ( 𝜑𝑥 ∈ ( 𝒫 𝐶 ∩ Fin ) ) → ( 𝐹𝑥 ) ∈ ( 𝒫 𝐴 ∩ Fin ) )
238 237 adantlr ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝑛𝐶𝐷 ) ) ∧ 𝑥 ∈ ( 𝒫 𝐶 ∩ Fin ) ) → ( 𝐹𝑥 ) ∈ ( 𝒫 𝐴 ∩ Fin ) )
239 nfv 𝑘 𝑥 ∈ ( 𝒫 𝐶 ∩ Fin )
240 96 239 nfan 𝑘 ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝑛𝐶𝐷 ) ) ∧ 𝑥 ∈ ( 𝒫 𝐶 ∩ Fin ) )
241 nfv 𝑛 𝑥 ∈ ( 𝒫 𝐶 ∩ Fin )
242 104 241 nfan 𝑛 ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝑛𝐶𝐷 ) ) ∧ 𝑥 ∈ ( 𝒫 𝐶 ∩ Fin ) )
243 233 adantl ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝑛𝐶𝐷 ) ) ∧ 𝑥 ∈ ( 𝒫 𝐶 ∩ Fin ) ) → 𝑥 ∈ Fin )
244 109 adantr ( ( 𝜑𝑥 ∈ ( 𝒫 𝐶 ∩ Fin ) ) → 𝐹 : 𝐶1-1𝐴 )
245 f1ores ( ( 𝐹 : 𝐶1-1𝐴𝑥𝐶 ) → ( 𝐹𝑥 ) : 𝑥1-1-onto→ ( 𝐹𝑥 ) )
246 244 140 245 syl2anc ( ( 𝜑𝑥 ∈ ( 𝒫 𝐶 ∩ Fin ) ) → ( 𝐹𝑥 ) : 𝑥1-1-onto→ ( 𝐹𝑥 ) )
247 246 adantlr ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝑛𝐶𝐷 ) ) ∧ 𝑥 ∈ ( 𝒫 𝐶 ∩ Fin ) ) → ( 𝐹𝑥 ) : 𝑥1-1-onto→ ( 𝐹𝑥 ) )
248 143 adantllr ( ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝑛𝐶𝐷 ) ) ∧ 𝑥 ∈ ( 𝒫 𝐶 ∩ Fin ) ) ∧ 𝑛𝑥 ) → ( ( 𝐹𝑥 ) ‘ 𝑛 ) = 𝐺 )
249 240 242 3 243 247 248 215 fsumf1of ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝑛𝐶𝐷 ) ) ∧ 𝑥 ∈ ( 𝒫 𝐶 ∩ Fin ) ) → Σ 𝑘 ∈ ( 𝐹𝑥 ) 𝐵 = Σ 𝑛𝑥 𝐷 )
250 249 eqcomd ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝑛𝐶𝐷 ) ) ∧ 𝑥 ∈ ( 𝒫 𝐶 ∩ Fin ) ) → Σ 𝑛𝑥 𝐷 = Σ 𝑘 ∈ ( 𝐹𝑥 ) 𝐵 )
251 sumeq1 ( 𝑦 = ( 𝐹𝑥 ) → Σ 𝑘𝑦 𝐵 = Σ 𝑘 ∈ ( 𝐹𝑥 ) 𝐵 )
252 251 rspceeqv ( ( ( 𝐹𝑥 ) ∈ ( 𝒫 𝐴 ∩ Fin ) ∧ Σ 𝑛𝑥 𝐷 = Σ 𝑘 ∈ ( 𝐹𝑥 ) 𝐵 ) → ∃ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) Σ 𝑛𝑥 𝐷 = Σ 𝑘𝑦 𝐵 )
253 238 250 252 syl2anc ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝑛𝐶𝐷 ) ) ∧ 𝑥 ∈ ( 𝒫 𝐶 ∩ Fin ) ) → ∃ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) Σ 𝑛𝑥 𝐷 = Σ 𝑘𝑦 𝐵 )
254 225 253 rnmptssrn ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝑛𝐶𝐷 ) ) → ran ( 𝑥 ∈ ( 𝒫 𝐶 ∩ Fin ) ↦ Σ 𝑛𝑥 𝐷 ) ⊆ ran ( 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑘𝑦 𝐵 ) )
255 223 254 eqssd ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝑛𝐶𝐷 ) ) → ran ( 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑘𝑦 𝐵 ) = ran ( 𝑥 ∈ ( 𝒫 𝐶 ∩ Fin ) ↦ Σ 𝑛𝑥 𝐷 ) )
256 255 supeq1d ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝑛𝐶𝐷 ) ) → sup ( ran ( 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑘𝑦 𝐵 ) , ℝ* , < ) = sup ( ran ( 𝑥 ∈ ( 𝒫 𝐶 ∩ Fin ) ↦ Σ 𝑛𝑥 𝐷 ) , ℝ* , < ) )
257 11 adantr ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝑛𝐶𝐷 ) ) → 𝐴 ∈ V )
258 96 257 213 sge0revalmpt ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝑛𝐶𝐷 ) ) → ( Σ^ ‘ ( 𝑘𝐴𝐵 ) ) = sup ( ran ( 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ Σ 𝑘𝑦 𝐵 ) , ℝ* , < ) )
259 4 adantr ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝑛𝐶𝐷 ) ) → 𝐶𝑉 )
260 104 259 207 sge0revalmpt ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝑛𝐶𝐷 ) ) → ( Σ^ ‘ ( 𝑛𝐶𝐷 ) ) = sup ( ran ( 𝑥 ∈ ( 𝒫 𝐶 ∩ Fin ) ↦ Σ 𝑛𝑥 𝐷 ) , ℝ* , < ) )
261 256 258 260 3eqtr4d ( ( 𝜑 ∧ ¬ +∞ ∈ ran ( 𝑛𝐶𝐷 ) ) → ( Σ^ ‘ ( 𝑘𝐴𝐵 ) ) = ( Σ^ ‘ ( 𝑛𝐶𝐷 ) ) )
262 69 261 pm2.61dan ( 𝜑 → ( Σ^ ‘ ( 𝑘𝐴𝐵 ) ) = ( Σ^ ‘ ( 𝑛𝐶𝐷 ) ) )