| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eliccnelico.1 | ⊢ ( 𝜑  →  𝐴  ∈  ℝ* ) | 
						
							| 2 |  | eliccnelico.b | ⊢ ( 𝜑  →  𝐵  ∈  ℝ* ) | 
						
							| 3 |  | eliccnelico.c | ⊢ ( 𝜑  →  𝐶  ∈  ( 𝐴 [,] 𝐵 ) ) | 
						
							| 4 |  | eliccnelico.nel | ⊢ ( 𝜑  →  ¬  𝐶  ∈  ( 𝐴 [,) 𝐵 ) ) | 
						
							| 5 |  | eliccxr | ⊢ ( 𝐶  ∈  ( 𝐴 [,] 𝐵 )  →  𝐶  ∈  ℝ* ) | 
						
							| 6 | 3 5 | syl | ⊢ ( 𝜑  →  𝐶  ∈  ℝ* ) | 
						
							| 7 |  | iccleub | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  𝐶  ∈  ( 𝐴 [,] 𝐵 ) )  →  𝐶  ≤  𝐵 ) | 
						
							| 8 | 1 2 3 7 | syl3anc | ⊢ ( 𝜑  →  𝐶  ≤  𝐵 ) | 
						
							| 9 | 1 | adantr | ⊢ ( ( 𝜑  ∧  ¬  𝐵  ≤  𝐶 )  →  𝐴  ∈  ℝ* ) | 
						
							| 10 | 2 | adantr | ⊢ ( ( 𝜑  ∧  ¬  𝐵  ≤  𝐶 )  →  𝐵  ∈  ℝ* ) | 
						
							| 11 | 6 | adantr | ⊢ ( ( 𝜑  ∧  ¬  𝐵  ≤  𝐶 )  →  𝐶  ∈  ℝ* ) | 
						
							| 12 |  | iccgelb | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  𝐶  ∈  ( 𝐴 [,] 𝐵 ) )  →  𝐴  ≤  𝐶 ) | 
						
							| 13 | 1 2 3 12 | syl3anc | ⊢ ( 𝜑  →  𝐴  ≤  𝐶 ) | 
						
							| 14 | 13 | adantr | ⊢ ( ( 𝜑  ∧  ¬  𝐵  ≤  𝐶 )  →  𝐴  ≤  𝐶 ) | 
						
							| 15 |  | simpr | ⊢ ( ( 𝜑  ∧  ¬  𝐵  ≤  𝐶 )  →  ¬  𝐵  ≤  𝐶 ) | 
						
							| 16 |  | xrltnle | ⊢ ( ( 𝐶  ∈  ℝ*  ∧  𝐵  ∈  ℝ* )  →  ( 𝐶  <  𝐵  ↔  ¬  𝐵  ≤  𝐶 ) ) | 
						
							| 17 | 6 2 16 | syl2anc | ⊢ ( 𝜑  →  ( 𝐶  <  𝐵  ↔  ¬  𝐵  ≤  𝐶 ) ) | 
						
							| 18 | 17 | adantr | ⊢ ( ( 𝜑  ∧  ¬  𝐵  ≤  𝐶 )  →  ( 𝐶  <  𝐵  ↔  ¬  𝐵  ≤  𝐶 ) ) | 
						
							| 19 | 15 18 | mpbird | ⊢ ( ( 𝜑  ∧  ¬  𝐵  ≤  𝐶 )  →  𝐶  <  𝐵 ) | 
						
							| 20 | 9 10 11 14 19 | elicod | ⊢ ( ( 𝜑  ∧  ¬  𝐵  ≤  𝐶 )  →  𝐶  ∈  ( 𝐴 [,) 𝐵 ) ) | 
						
							| 21 | 4 | adantr | ⊢ ( ( 𝜑  ∧  ¬  𝐵  ≤  𝐶 )  →  ¬  𝐶  ∈  ( 𝐴 [,) 𝐵 ) ) | 
						
							| 22 | 20 21 | condan | ⊢ ( 𝜑  →  𝐵  ≤  𝐶 ) | 
						
							| 23 | 6 2 8 22 | xrletrid | ⊢ ( 𝜑  →  𝐶  =  𝐵 ) |