| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eliccelicod.a | ⊢ ( 𝜑  →  𝐴  ∈  ℝ* ) | 
						
							| 2 |  | eliccelicod.b | ⊢ ( 𝜑  →  𝐵  ∈  ℝ* ) | 
						
							| 3 |  | eliccelicod.c | ⊢ ( 𝜑  →  𝐶  ∈  ( 𝐴 [,] 𝐵 ) ) | 
						
							| 4 |  | eliccelicod.d | ⊢ ( 𝜑  →  𝐶  ≠  𝐵 ) | 
						
							| 5 |  | eliccxr | ⊢ ( 𝐶  ∈  ( 𝐴 [,] 𝐵 )  →  𝐶  ∈  ℝ* ) | 
						
							| 6 | 3 5 | syl | ⊢ ( 𝜑  →  𝐶  ∈  ℝ* ) | 
						
							| 7 |  | iccgelb | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  𝐶  ∈  ( 𝐴 [,] 𝐵 ) )  →  𝐴  ≤  𝐶 ) | 
						
							| 8 | 1 2 3 7 | syl3anc | ⊢ ( 𝜑  →  𝐴  ≤  𝐶 ) | 
						
							| 9 |  | iccleub | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  𝐶  ∈  ( 𝐴 [,] 𝐵 ) )  →  𝐶  ≤  𝐵 ) | 
						
							| 10 | 1 2 3 9 | syl3anc | ⊢ ( 𝜑  →  𝐶  ≤  𝐵 ) | 
						
							| 11 | 6 2 10 4 | xrleneltd | ⊢ ( 𝜑  →  𝐶  <  𝐵 ) | 
						
							| 12 | 1 2 6 8 11 | elicod | ⊢ ( 𝜑  →  𝐶  ∈  ( 𝐴 [,) 𝐵 ) ) |