| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eliccelicod.a |  |-  ( ph -> A e. RR* ) | 
						
							| 2 |  | eliccelicod.b |  |-  ( ph -> B e. RR* ) | 
						
							| 3 |  | eliccelicod.c |  |-  ( ph -> C e. ( A [,] B ) ) | 
						
							| 4 |  | eliccelicod.d |  |-  ( ph -> C =/= B ) | 
						
							| 5 |  | eliccxr |  |-  ( C e. ( A [,] B ) -> C e. RR* ) | 
						
							| 6 | 3 5 | syl |  |-  ( ph -> C e. RR* ) | 
						
							| 7 |  | iccgelb |  |-  ( ( A e. RR* /\ B e. RR* /\ C e. ( A [,] B ) ) -> A <_ C ) | 
						
							| 8 | 1 2 3 7 | syl3anc |  |-  ( ph -> A <_ C ) | 
						
							| 9 |  | iccleub |  |-  ( ( A e. RR* /\ B e. RR* /\ C e. ( A [,] B ) ) -> C <_ B ) | 
						
							| 10 | 1 2 3 9 | syl3anc |  |-  ( ph -> C <_ B ) | 
						
							| 11 | 6 2 10 4 | xrleneltd |  |-  ( ph -> C < B ) | 
						
							| 12 | 1 2 6 8 11 | elicod |  |-  ( ph -> C e. ( A [,) B ) ) |