| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eliccnelico.1 |  |-  ( ph -> A e. RR* ) | 
						
							| 2 |  | eliccnelico.b |  |-  ( ph -> B e. RR* ) | 
						
							| 3 |  | eliccnelico.c |  |-  ( ph -> C e. ( A [,] B ) ) | 
						
							| 4 |  | eliccnelico.nel |  |-  ( ph -> -. C e. ( A [,) B ) ) | 
						
							| 5 |  | eliccxr |  |-  ( C e. ( A [,] B ) -> C e. RR* ) | 
						
							| 6 | 3 5 | syl |  |-  ( ph -> C e. RR* ) | 
						
							| 7 |  | iccleub |  |-  ( ( A e. RR* /\ B e. RR* /\ C e. ( A [,] B ) ) -> C <_ B ) | 
						
							| 8 | 1 2 3 7 | syl3anc |  |-  ( ph -> C <_ B ) | 
						
							| 9 | 1 | adantr |  |-  ( ( ph /\ -. B <_ C ) -> A e. RR* ) | 
						
							| 10 | 2 | adantr |  |-  ( ( ph /\ -. B <_ C ) -> B e. RR* ) | 
						
							| 11 | 6 | adantr |  |-  ( ( ph /\ -. B <_ C ) -> C e. RR* ) | 
						
							| 12 |  | iccgelb |  |-  ( ( A e. RR* /\ B e. RR* /\ C e. ( A [,] B ) ) -> A <_ C ) | 
						
							| 13 | 1 2 3 12 | syl3anc |  |-  ( ph -> A <_ C ) | 
						
							| 14 | 13 | adantr |  |-  ( ( ph /\ -. B <_ C ) -> A <_ C ) | 
						
							| 15 |  | simpr |  |-  ( ( ph /\ -. B <_ C ) -> -. B <_ C ) | 
						
							| 16 |  | xrltnle |  |-  ( ( C e. RR* /\ B e. RR* ) -> ( C < B <-> -. B <_ C ) ) | 
						
							| 17 | 6 2 16 | syl2anc |  |-  ( ph -> ( C < B <-> -. B <_ C ) ) | 
						
							| 18 | 17 | adantr |  |-  ( ( ph /\ -. B <_ C ) -> ( C < B <-> -. B <_ C ) ) | 
						
							| 19 | 15 18 | mpbird |  |-  ( ( ph /\ -. B <_ C ) -> C < B ) | 
						
							| 20 | 9 10 11 14 19 | elicod |  |-  ( ( ph /\ -. B <_ C ) -> C e. ( A [,) B ) ) | 
						
							| 21 | 4 | adantr |  |-  ( ( ph /\ -. B <_ C ) -> -. C e. ( A [,) B ) ) | 
						
							| 22 | 20 21 | condan |  |-  ( ph -> B <_ C ) | 
						
							| 23 | 6 2 8 22 | xrletrid |  |-  ( ph -> C = B ) |