Step |
Hyp |
Ref |
Expression |
1 |
|
sge0cl.x |
|
2 |
|
sge0cl.f |
|
3 |
|
fveq2 |
|
4 |
|
sge00 |
|
5 |
4
|
a1i |
|
6 |
3 5
|
eqtrd |
|
7 |
|
0e0iccpnf |
|
8 |
7
|
a1i |
|
9 |
6 8
|
eqeltrd |
|
10 |
9
|
adantl |
|
11 |
1
|
adantr |
|
12 |
2
|
adantr |
|
13 |
|
simpr |
|
14 |
11 12 13
|
sge0pnfval |
|
15 |
|
pnfel0pnf |
|
16 |
15
|
a1i |
|
17 |
14 16
|
eqeltrd |
|
18 |
17
|
adantlr |
|
19 |
|
simpll |
|
20 |
|
neqne |
|
21 |
20
|
ad2antlr |
|
22 |
|
simpr |
|
23 |
|
0xr |
|
24 |
23
|
a1i |
|
25 |
|
pnfxr |
|
26 |
25
|
a1i |
|
27 |
1
|
adantr |
|
28 |
2
|
adantr |
|
29 |
|
simpr |
|
30 |
28 29
|
fge0iccico |
|
31 |
27 30
|
sge0reval |
|
32 |
|
elinel2 |
|
33 |
32
|
adantl |
|
34 |
2
|
ad2antrr |
|
35 |
|
elinel1 |
|
36 |
|
elpwi |
|
37 |
35 36
|
syl |
|
38 |
37
|
adantl |
|
39 |
38
|
adantr |
|
40 |
|
simpr |
|
41 |
39 40
|
sseldd |
|
42 |
34 41
|
ffvelrnd |
|
43 |
42
|
adantllr |
|
44 |
|
nne |
|
45 |
44
|
biimpi |
|
46 |
45
|
eqcomd |
|
47 |
46
|
adantl |
|
48 |
2
|
ffund |
|
49 |
48
|
3ad2ant1 |
|
50 |
41
|
3impa |
|
51 |
2
|
fdmd |
|
52 |
51
|
eqcomd |
|
53 |
52
|
3ad2ant1 |
|
54 |
50 53
|
eleqtrd |
|
55 |
|
fvelrn |
|
56 |
49 54 55
|
syl2anc |
|
57 |
56
|
ad5ant134 |
|
58 |
47 57
|
eqeltrd |
|
59 |
29
|
ad3antrrr |
|
60 |
58 59
|
condan |
|
61 |
|
ge0xrre |
|
62 |
43 60 61
|
syl2anc |
|
63 |
33 62
|
fsumrecl |
|
64 |
63
|
ralrimiva |
|
65 |
|
eqid |
|
66 |
65
|
rnmptss |
|
67 |
64 66
|
syl |
|
68 |
|
ressxr |
|
69 |
68
|
a1i |
|
70 |
67 69
|
sstrd |
|
71 |
|
supxrcl |
|
72 |
70 71
|
syl |
|
73 |
31 72
|
eqeltrd |
|
74 |
73
|
adantlr |
|
75 |
52
|
adantr |
|
76 |
|
neneq |
|
77 |
76
|
adantl |
|
78 |
|
frel |
|
79 |
2 78
|
syl |
|
80 |
79
|
adantr |
|
81 |
|
reldm0 |
|
82 |
80 81
|
syl |
|
83 |
77 82
|
mtbid |
|
84 |
83
|
neqned |
|
85 |
75 84
|
eqnetrd |
|
86 |
|
n0 |
|
87 |
85 86
|
sylib |
|
88 |
87
|
adantr |
|
89 |
23
|
a1i |
|
90 |
2
|
ffvelrnda |
|
91 |
90
|
adantlr |
|
92 |
|
nne |
|
93 |
92
|
biimpi |
|
94 |
93
|
eqcomd |
|
95 |
94
|
adantl |
|
96 |
2
|
adantr |
|
97 |
96
|
ffund |
|
98 |
|
simpr |
|
99 |
52
|
adantr |
|
100 |
98 99
|
eleqtrd |
|
101 |
|
fvelrn |
|
102 |
97 100 101
|
syl2anc |
|
103 |
102
|
adantlr |
|
104 |
103
|
adantr |
|
105 |
95 104
|
eqeltrd |
|
106 |
29
|
ad2antrr |
|
107 |
105 106
|
condan |
|
108 |
|
ge0xrre |
|
109 |
91 107 108
|
syl2anc |
|
110 |
109
|
rexrd |
|
111 |
73
|
adantr |
|
112 |
23
|
a1i |
|
113 |
25
|
a1i |
|
114 |
|
iccgelb |
|
115 |
112 113 90 114
|
syl3anc |
|
116 |
115
|
adantlr |
|
117 |
70
|
adantr |
|
118 |
|
snelpwi |
|
119 |
|
snfi |
|
120 |
119
|
a1i |
|
121 |
118 120
|
elind |
|
122 |
121
|
adantl |
|
123 |
|
simpr |
|
124 |
109
|
recnd |
|
125 |
|
fveq2 |
|
126 |
125
|
sumsn |
|
127 |
123 124 126
|
syl2anc |
|
128 |
127
|
eqcomd |
|
129 |
|
sumeq1 |
|
130 |
129
|
rspceeqv |
|
131 |
122 128 130
|
syl2anc |
|
132 |
65
|
elrnmpt |
|
133 |
91 132
|
syl |
|
134 |
131 133
|
mpbird |
|
135 |
|
supxrub |
|
136 |
117 134 135
|
syl2anc |
|
137 |
31
|
eqcomd |
|
138 |
137
|
adantr |
|
139 |
136 138
|
breqtrd |
|
140 |
89 110 111 116 139
|
xrletrd |
|
141 |
140
|
ex |
|
142 |
141
|
adantlr |
|
143 |
142
|
exlimdv |
|
144 |
88 143
|
mpd |
|
145 |
|
pnfge |
|
146 |
73 145
|
syl |
|
147 |
146
|
adantlr |
|
148 |
24 26 74 144 147
|
eliccxrd |
|
149 |
19 21 22 148
|
syl21anc |
|
150 |
18 149
|
pm2.61dan |
|
151 |
10 150
|
pm2.61dan |
|