Metamath Proof Explorer


Theorem sge0cl

Description: The arbitrary sum of nonnegative extended reals is a nonnegative extended real. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses sge0cl.x φXV
sge0cl.f φF:X0+∞
Assertion sge0cl φsum^F0+∞

Proof

Step Hyp Ref Expression
1 sge0cl.x φXV
2 sge0cl.f φF:X0+∞
3 fveq2 F=sum^F=sum^
4 sge00 sum^=0
5 4 a1i F=sum^=0
6 3 5 eqtrd F=sum^F=0
7 0e0iccpnf 00+∞
8 7 a1i F=00+∞
9 6 8 eqeltrd F=sum^F0+∞
10 9 adantl φF=sum^F0+∞
11 1 adantr φ+∞ranFXV
12 2 adantr φ+∞ranFF:X0+∞
13 simpr φ+∞ranF+∞ranF
14 11 12 13 sge0pnfval φ+∞ranFsum^F=+∞
15 pnfel0pnf +∞0+∞
16 15 a1i φ+∞ranF+∞0+∞
17 14 16 eqeltrd φ+∞ranFsum^F0+∞
18 17 adantlr φ¬F=+∞ranFsum^F0+∞
19 simpll φ¬F=¬+∞ranFφ
20 neqne ¬F=F
21 20 ad2antlr φ¬F=¬+∞ranFF
22 simpr φ¬F=¬+∞ranF¬+∞ranF
23 0xr 0*
24 23 a1i φF¬+∞ranF0*
25 pnfxr +∞*
26 25 a1i φF¬+∞ranF+∞*
27 1 adantr φ¬+∞ranFXV
28 2 adantr φ¬+∞ranFF:X0+∞
29 simpr φ¬+∞ranF¬+∞ranF
30 28 29 fge0iccico φ¬+∞ranFF:X0+∞
31 27 30 sge0reval φ¬+∞ranFsum^F=supranx𝒫XFinyxFy*<
32 elinel2 x𝒫XFinxFin
33 32 adantl φ¬+∞ranFx𝒫XFinxFin
34 2 ad2antrr φx𝒫XFinyxF:X0+∞
35 elinel1 x𝒫XFinx𝒫X
36 elpwi x𝒫XxX
37 35 36 syl x𝒫XFinxX
38 37 adantl φx𝒫XFinxX
39 38 adantr φx𝒫XFinyxxX
40 simpr φx𝒫XFinyxyx
41 39 40 sseldd φx𝒫XFinyxyX
42 34 41 ffvelrnd φx𝒫XFinyxFy0+∞
43 42 adantllr φ¬+∞ranFx𝒫XFinyxFy0+∞
44 nne ¬Fy+∞Fy=+∞
45 44 biimpi ¬Fy+∞Fy=+∞
46 45 eqcomd ¬Fy+∞+∞=Fy
47 46 adantl φ¬+∞ranFx𝒫XFinyx¬Fy+∞+∞=Fy
48 2 ffund φFunF
49 48 3ad2ant1 φx𝒫XFinyxFunF
50 41 3impa φx𝒫XFinyxyX
51 2 fdmd φdomF=X
52 51 eqcomd φX=domF
53 52 3ad2ant1 φx𝒫XFinyxX=domF
54 50 53 eleqtrd φx𝒫XFinyxydomF
55 fvelrn FunFydomFFyranF
56 49 54 55 syl2anc φx𝒫XFinyxFyranF
57 56 ad5ant134 φ¬+∞ranFx𝒫XFinyx¬Fy+∞FyranF
58 47 57 eqeltrd φ¬+∞ranFx𝒫XFinyx¬Fy+∞+∞ranF
59 29 ad3antrrr φ¬+∞ranFx𝒫XFinyx¬Fy+∞¬+∞ranF
60 58 59 condan φ¬+∞ranFx𝒫XFinyxFy+∞
61 ge0xrre Fy0+∞Fy+∞Fy
62 43 60 61 syl2anc φ¬+∞ranFx𝒫XFinyxFy
63 33 62 fsumrecl φ¬+∞ranFx𝒫XFinyxFy
64 63 ralrimiva φ¬+∞ranFx𝒫XFinyxFy
65 eqid x𝒫XFinyxFy=x𝒫XFinyxFy
66 65 rnmptss x𝒫XFinyxFyranx𝒫XFinyxFy
67 64 66 syl φ¬+∞ranFranx𝒫XFinyxFy
68 ressxr *
69 68 a1i φ¬+∞ranF*
70 67 69 sstrd φ¬+∞ranFranx𝒫XFinyxFy*
71 supxrcl ranx𝒫XFinyxFy*supranx𝒫XFinyxFy*<*
72 70 71 syl φ¬+∞ranFsupranx𝒫XFinyxFy*<*
73 31 72 eqeltrd φ¬+∞ranFsum^F*
74 73 adantlr φF¬+∞ranFsum^F*
75 52 adantr φFX=domF
76 neneq F¬F=
77 76 adantl φF¬F=
78 frel F:X0+∞RelF
79 2 78 syl φRelF
80 79 adantr φFRelF
81 reldm0 RelFF=domF=
82 80 81 syl φFF=domF=
83 77 82 mtbid φF¬domF=
84 83 neqned φFdomF
85 75 84 eqnetrd φFX
86 n0 XzzX
87 85 86 sylib φFzzX
88 87 adantr φF¬+∞ranFzzX
89 23 a1i φ¬+∞ranFzX0*
90 2 ffvelrnda φzXFz0+∞
91 90 adantlr φ¬+∞ranFzXFz0+∞
92 nne ¬Fz+∞Fz=+∞
93 92 biimpi ¬Fz+∞Fz=+∞
94 93 eqcomd ¬Fz+∞+∞=Fz
95 94 adantl φ¬+∞ranFzX¬Fz+∞+∞=Fz
96 2 adantr φzXF:X0+∞
97 96 ffund φzXFunF
98 simpr φzXzX
99 52 adantr φzXX=domF
100 98 99 eleqtrd φzXzdomF
101 fvelrn FunFzdomFFzranF
102 97 100 101 syl2anc φzXFzranF
103 102 adantlr φ¬+∞ranFzXFzranF
104 103 adantr φ¬+∞ranFzX¬Fz+∞FzranF
105 95 104 eqeltrd φ¬+∞ranFzX¬Fz+∞+∞ranF
106 29 ad2antrr φ¬+∞ranFzX¬Fz+∞¬+∞ranF
107 105 106 condan φ¬+∞ranFzXFz+∞
108 ge0xrre Fz0+∞Fz+∞Fz
109 91 107 108 syl2anc φ¬+∞ranFzXFz
110 109 rexrd φ¬+∞ranFzXFz*
111 73 adantr φ¬+∞ranFzXsum^F*
112 23 a1i φzX0*
113 25 a1i φzX+∞*
114 iccgelb 0*+∞*Fz0+∞0Fz
115 112 113 90 114 syl3anc φzX0Fz
116 115 adantlr φ¬+∞ranFzX0Fz
117 70 adantr φ¬+∞ranFzXranx𝒫XFinyxFy*
118 snelpwi zXz𝒫X
119 snfi zFin
120 119 a1i zXzFin
121 118 120 elind zXz𝒫XFin
122 121 adantl φ¬+∞ranFzXz𝒫XFin
123 simpr φ¬+∞ranFzXzX
124 109 recnd φ¬+∞ranFzXFz
125 fveq2 y=zFy=Fz
126 125 sumsn zXFzyzFy=Fz
127 123 124 126 syl2anc φ¬+∞ranFzXyzFy=Fz
128 127 eqcomd φ¬+∞ranFzXFz=yzFy
129 sumeq1 x=zyxFy=yzFy
130 129 rspceeqv z𝒫XFinFz=yzFyx𝒫XFinFz=yxFy
131 122 128 130 syl2anc φ¬+∞ranFzXx𝒫XFinFz=yxFy
132 65 elrnmpt Fz0+∞Fzranx𝒫XFinyxFyx𝒫XFinFz=yxFy
133 91 132 syl φ¬+∞ranFzXFzranx𝒫XFinyxFyx𝒫XFinFz=yxFy
134 131 133 mpbird φ¬+∞ranFzXFzranx𝒫XFinyxFy
135 supxrub ranx𝒫XFinyxFy*Fzranx𝒫XFinyxFyFzsupranx𝒫XFinyxFy*<
136 117 134 135 syl2anc φ¬+∞ranFzXFzsupranx𝒫XFinyxFy*<
137 31 eqcomd φ¬+∞ranFsupranx𝒫XFinyxFy*<=sum^F
138 137 adantr φ¬+∞ranFzXsupranx𝒫XFinyxFy*<=sum^F
139 136 138 breqtrd φ¬+∞ranFzXFzsum^F
140 89 110 111 116 139 xrletrd φ¬+∞ranFzX0sum^F
141 140 ex φ¬+∞ranFzX0sum^F
142 141 adantlr φF¬+∞ranFzX0sum^F
143 142 exlimdv φF¬+∞ranFzzX0sum^F
144 88 143 mpd φF¬+∞ranF0sum^F
145 pnfge sum^F*sum^F+∞
146 73 145 syl φ¬+∞ranFsum^F+∞
147 146 adantlr φF¬+∞ranFsum^F+∞
148 24 26 74 144 147 eliccxrd φF¬+∞ranFsum^F0+∞
149 19 21 22 148 syl21anc φ¬F=¬+∞ranFsum^F0+∞
150 18 149 pm2.61dan φ¬F=sum^F0+∞
151 10 150 pm2.61dan φsum^F0+∞