| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sge0cl.x |
|
| 2 |
|
sge0cl.f |
|
| 3 |
|
fveq2 |
|
| 4 |
|
sge00 |
|
| 5 |
4
|
a1i |
|
| 6 |
3 5
|
eqtrd |
|
| 7 |
|
0e0iccpnf |
|
| 8 |
7
|
a1i |
|
| 9 |
6 8
|
eqeltrd |
|
| 10 |
9
|
adantl |
|
| 11 |
1
|
adantr |
|
| 12 |
2
|
adantr |
|
| 13 |
|
simpr |
|
| 14 |
11 12 13
|
sge0pnfval |
|
| 15 |
|
pnfel0pnf |
|
| 16 |
15
|
a1i |
|
| 17 |
14 16
|
eqeltrd |
|
| 18 |
17
|
adantlr |
|
| 19 |
|
simpll |
|
| 20 |
|
neqne |
|
| 21 |
20
|
ad2antlr |
|
| 22 |
|
simpr |
|
| 23 |
|
0xr |
|
| 24 |
23
|
a1i |
|
| 25 |
|
pnfxr |
|
| 26 |
25
|
a1i |
|
| 27 |
1
|
adantr |
|
| 28 |
2
|
adantr |
|
| 29 |
|
simpr |
|
| 30 |
28 29
|
fge0iccico |
|
| 31 |
27 30
|
sge0reval |
|
| 32 |
|
elinel2 |
|
| 33 |
32
|
adantl |
|
| 34 |
2
|
ad2antrr |
|
| 35 |
|
elinel1 |
|
| 36 |
|
elpwi |
|
| 37 |
35 36
|
syl |
|
| 38 |
37
|
adantl |
|
| 39 |
38
|
adantr |
|
| 40 |
|
simpr |
|
| 41 |
39 40
|
sseldd |
|
| 42 |
34 41
|
ffvelcdmd |
|
| 43 |
42
|
adantllr |
|
| 44 |
|
nne |
|
| 45 |
44
|
biimpi |
|
| 46 |
45
|
eqcomd |
|
| 47 |
46
|
adantl |
|
| 48 |
2
|
ffund |
|
| 49 |
48
|
3ad2ant1 |
|
| 50 |
41
|
3impa |
|
| 51 |
2
|
fdmd |
|
| 52 |
51
|
eqcomd |
|
| 53 |
52
|
3ad2ant1 |
|
| 54 |
50 53
|
eleqtrd |
|
| 55 |
|
fvelrn |
|
| 56 |
49 54 55
|
syl2anc |
|
| 57 |
56
|
ad5ant134 |
|
| 58 |
47 57
|
eqeltrd |
|
| 59 |
29
|
ad3antrrr |
|
| 60 |
58 59
|
condan |
|
| 61 |
|
ge0xrre |
|
| 62 |
43 60 61
|
syl2anc |
|
| 63 |
33 62
|
fsumrecl |
|
| 64 |
63
|
ralrimiva |
|
| 65 |
|
eqid |
|
| 66 |
65
|
rnmptss |
|
| 67 |
64 66
|
syl |
|
| 68 |
|
ressxr |
|
| 69 |
68
|
a1i |
|
| 70 |
67 69
|
sstrd |
|
| 71 |
|
supxrcl |
|
| 72 |
70 71
|
syl |
|
| 73 |
31 72
|
eqeltrd |
|
| 74 |
73
|
adantlr |
|
| 75 |
52
|
adantr |
|
| 76 |
|
neneq |
|
| 77 |
76
|
adantl |
|
| 78 |
|
frel |
|
| 79 |
2 78
|
syl |
|
| 80 |
79
|
adantr |
|
| 81 |
|
reldm0 |
|
| 82 |
80 81
|
syl |
|
| 83 |
77 82
|
mtbid |
|
| 84 |
83
|
neqned |
|
| 85 |
75 84
|
eqnetrd |
|
| 86 |
|
n0 |
|
| 87 |
85 86
|
sylib |
|
| 88 |
87
|
adantr |
|
| 89 |
23
|
a1i |
|
| 90 |
2
|
ffvelcdmda |
|
| 91 |
90
|
adantlr |
|
| 92 |
|
nne |
|
| 93 |
92
|
biimpi |
|
| 94 |
93
|
eqcomd |
|
| 95 |
94
|
adantl |
|
| 96 |
2
|
adantr |
|
| 97 |
96
|
ffund |
|
| 98 |
|
simpr |
|
| 99 |
52
|
adantr |
|
| 100 |
98 99
|
eleqtrd |
|
| 101 |
|
fvelrn |
|
| 102 |
97 100 101
|
syl2anc |
|
| 103 |
102
|
adantlr |
|
| 104 |
103
|
adantr |
|
| 105 |
95 104
|
eqeltrd |
|
| 106 |
29
|
ad2antrr |
|
| 107 |
105 106
|
condan |
|
| 108 |
|
ge0xrre |
|
| 109 |
91 107 108
|
syl2anc |
|
| 110 |
109
|
rexrd |
|
| 111 |
73
|
adantr |
|
| 112 |
23
|
a1i |
|
| 113 |
25
|
a1i |
|
| 114 |
|
iccgelb |
|
| 115 |
112 113 90 114
|
syl3anc |
|
| 116 |
115
|
adantlr |
|
| 117 |
70
|
adantr |
|
| 118 |
|
snelpwi |
|
| 119 |
|
snfi |
|
| 120 |
119
|
a1i |
|
| 121 |
118 120
|
elind |
|
| 122 |
121
|
adantl |
|
| 123 |
|
simpr |
|
| 124 |
109
|
recnd |
|
| 125 |
|
fveq2 |
|
| 126 |
125
|
sumsn |
|
| 127 |
123 124 126
|
syl2anc |
|
| 128 |
127
|
eqcomd |
|
| 129 |
|
sumeq1 |
|
| 130 |
129
|
rspceeqv |
|
| 131 |
122 128 130
|
syl2anc |
|
| 132 |
65
|
elrnmpt |
|
| 133 |
91 132
|
syl |
|
| 134 |
131 133
|
mpbird |
|
| 135 |
|
supxrub |
|
| 136 |
117 134 135
|
syl2anc |
|
| 137 |
31
|
eqcomd |
|
| 138 |
137
|
adantr |
|
| 139 |
136 138
|
breqtrd |
|
| 140 |
89 110 111 116 139
|
xrletrd |
|
| 141 |
140
|
ex |
|
| 142 |
141
|
adantlr |
|
| 143 |
142
|
exlimdv |
|
| 144 |
88 143
|
mpd |
|
| 145 |
|
pnfge |
|
| 146 |
73 145
|
syl |
|
| 147 |
146
|
adantlr |
|
| 148 |
24 26 74 144 147
|
eliccxrd |
|
| 149 |
19 21 22 148
|
syl21anc |
|
| 150 |
18 149
|
pm2.61dan |
|
| 151 |
10 150
|
pm2.61dan |
|