Metamath Proof Explorer


Theorem eliccxrd

Description: Membership in a closed real interval. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses eliccxrd.1 φA*
eliccxrd.2 φB*
eliccxrd.3 φC*
eliccxrd.4 φAC
eliccxrd.5 φCB
Assertion eliccxrd φCAB

Proof

Step Hyp Ref Expression
1 eliccxrd.1 φA*
2 eliccxrd.2 φB*
3 eliccxrd.3 φC*
4 eliccxrd.4 φAC
5 eliccxrd.5 φCB
6 4 5 jca φACCB
7 elicc4 A*B*C*CABACCB
8 1 2 3 7 syl3anc φCABACCB
9 6 8 mpbird φCAB