| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sge0tsms.g |
|- G = ( RR*s |`s ( 0 [,] +oo ) ) |
| 2 |
|
sge0tsms.x |
|- ( ph -> X e. V ) |
| 3 |
|
sge0tsms.f |
|- ( ph -> F : X --> ( 0 [,] +oo ) ) |
| 4 |
|
eqid |
|- sup ( ran ( x e. ( ~P X i^i Fin ) |-> ( G gsum ( F |` x ) ) ) , RR* , < ) = sup ( ran ( x e. ( ~P X i^i Fin ) |-> ( G gsum ( F |` x ) ) ) , RR* , < ) |
| 5 |
4
|
a1i |
|- ( ph -> sup ( ran ( x e. ( ~P X i^i Fin ) |-> ( G gsum ( F |` x ) ) ) , RR* , < ) = sup ( ran ( x e. ( ~P X i^i Fin ) |-> ( G gsum ( F |` x ) ) ) , RR* , < ) ) |
| 6 |
|
xrltso |
|- < Or RR* |
| 7 |
6
|
supex |
|- sup ( ran ( x e. ( ~P X i^i Fin ) |-> ( G gsum ( F |` x ) ) ) , RR* , < ) e. _V |
| 8 |
7
|
a1i |
|- ( ph -> sup ( ran ( x e. ( ~P X i^i Fin ) |-> ( G gsum ( F |` x ) ) ) , RR* , < ) e. _V ) |
| 9 |
|
elsng |
|- ( sup ( ran ( x e. ( ~P X i^i Fin ) |-> ( G gsum ( F |` x ) ) ) , RR* , < ) e. _V -> ( sup ( ran ( x e. ( ~P X i^i Fin ) |-> ( G gsum ( F |` x ) ) ) , RR* , < ) e. { sup ( ran ( x e. ( ~P X i^i Fin ) |-> ( G gsum ( F |` x ) ) ) , RR* , < ) } <-> sup ( ran ( x e. ( ~P X i^i Fin ) |-> ( G gsum ( F |` x ) ) ) , RR* , < ) = sup ( ran ( x e. ( ~P X i^i Fin ) |-> ( G gsum ( F |` x ) ) ) , RR* , < ) ) ) |
| 10 |
8 9
|
syl |
|- ( ph -> ( sup ( ran ( x e. ( ~P X i^i Fin ) |-> ( G gsum ( F |` x ) ) ) , RR* , < ) e. { sup ( ran ( x e. ( ~P X i^i Fin ) |-> ( G gsum ( F |` x ) ) ) , RR* , < ) } <-> sup ( ran ( x e. ( ~P X i^i Fin ) |-> ( G gsum ( F |` x ) ) ) , RR* , < ) = sup ( ran ( x e. ( ~P X i^i Fin ) |-> ( G gsum ( F |` x ) ) ) , RR* , < ) ) ) |
| 11 |
5 10
|
mpbird |
|- ( ph -> sup ( ran ( x e. ( ~P X i^i Fin ) |-> ( G gsum ( F |` x ) ) ) , RR* , < ) e. { sup ( ran ( x e. ( ~P X i^i Fin ) |-> ( G gsum ( F |` x ) ) ) , RR* , < ) } ) |
| 12 |
2
|
adantr |
|- ( ( ph /\ +oo e. ran F ) -> X e. V ) |
| 13 |
3
|
adantr |
|- ( ( ph /\ +oo e. ran F ) -> F : X --> ( 0 [,] +oo ) ) |
| 14 |
|
simpr |
|- ( ( ph /\ +oo e. ran F ) -> +oo e. ran F ) |
| 15 |
12 13 14
|
sge0pnfval |
|- ( ( ph /\ +oo e. ran F ) -> ( sum^ ` F ) = +oo ) |
| 16 |
3
|
ffnd |
|- ( ph -> F Fn X ) |
| 17 |
16
|
adantr |
|- ( ( ph /\ +oo e. ran F ) -> F Fn X ) |
| 18 |
|
fvelrnb |
|- ( F Fn X -> ( +oo e. ran F <-> E. y e. X ( F ` y ) = +oo ) ) |
| 19 |
17 18
|
syl |
|- ( ( ph /\ +oo e. ran F ) -> ( +oo e. ran F <-> E. y e. X ( F ` y ) = +oo ) ) |
| 20 |
14 19
|
mpbid |
|- ( ( ph /\ +oo e. ran F ) -> E. y e. X ( F ` y ) = +oo ) |
| 21 |
|
iccssxr |
|- ( 0 [,] +oo ) C_ RR* |
| 22 |
|
simpr |
|- ( ( ph /\ x e. ( ~P X i^i Fin ) ) -> x e. ( ~P X i^i Fin ) ) |
| 23 |
3
|
adantr |
|- ( ( ph /\ x e. ( ~P X i^i Fin ) ) -> F : X --> ( 0 [,] +oo ) ) |
| 24 |
|
elinel1 |
|- ( x e. ( ~P X i^i Fin ) -> x e. ~P X ) |
| 25 |
|
elpwi |
|- ( x e. ~P X -> x C_ X ) |
| 26 |
24 25
|
syl |
|- ( x e. ( ~P X i^i Fin ) -> x C_ X ) |
| 27 |
26
|
adantl |
|- ( ( ph /\ x e. ( ~P X i^i Fin ) ) -> x C_ X ) |
| 28 |
|
fssres |
|- ( ( F : X --> ( 0 [,] +oo ) /\ x C_ X ) -> ( F |` x ) : x --> ( 0 [,] +oo ) ) |
| 29 |
23 27 28
|
syl2anc |
|- ( ( ph /\ x e. ( ~P X i^i Fin ) ) -> ( F |` x ) : x --> ( 0 [,] +oo ) ) |
| 30 |
|
elinel2 |
|- ( x e. ( ~P X i^i Fin ) -> x e. Fin ) |
| 31 |
30
|
adantl |
|- ( ( ph /\ x e. ( ~P X i^i Fin ) ) -> x e. Fin ) |
| 32 |
|
0red |
|- ( ( ph /\ x e. ( ~P X i^i Fin ) ) -> 0 e. RR ) |
| 33 |
29 31 32
|
fdmfifsupp |
|- ( ( ph /\ x e. ( ~P X i^i Fin ) ) -> ( F |` x ) finSupp 0 ) |
| 34 |
1 22 29 33
|
gsumge0cl |
|- ( ( ph /\ x e. ( ~P X i^i Fin ) ) -> ( G gsum ( F |` x ) ) e. ( 0 [,] +oo ) ) |
| 35 |
21 34
|
sselid |
|- ( ( ph /\ x e. ( ~P X i^i Fin ) ) -> ( G gsum ( F |` x ) ) e. RR* ) |
| 36 |
35
|
ralrimiva |
|- ( ph -> A. x e. ( ~P X i^i Fin ) ( G gsum ( F |` x ) ) e. RR* ) |
| 37 |
36
|
3ad2ant1 |
|- ( ( ph /\ y e. X /\ ( F ` y ) = +oo ) -> A. x e. ( ~P X i^i Fin ) ( G gsum ( F |` x ) ) e. RR* ) |
| 38 |
|
eqid |
|- ( x e. ( ~P X i^i Fin ) |-> ( G gsum ( F |` x ) ) ) = ( x e. ( ~P X i^i Fin ) |-> ( G gsum ( F |` x ) ) ) |
| 39 |
38
|
rnmptss |
|- ( A. x e. ( ~P X i^i Fin ) ( G gsum ( F |` x ) ) e. RR* -> ran ( x e. ( ~P X i^i Fin ) |-> ( G gsum ( F |` x ) ) ) C_ RR* ) |
| 40 |
37 39
|
syl |
|- ( ( ph /\ y e. X /\ ( F ` y ) = +oo ) -> ran ( x e. ( ~P X i^i Fin ) |-> ( G gsum ( F |` x ) ) ) C_ RR* ) |
| 41 |
|
snelpwi |
|- ( y e. X -> { y } e. ~P X ) |
| 42 |
|
snfi |
|- { y } e. Fin |
| 43 |
42
|
a1i |
|- ( y e. X -> { y } e. Fin ) |
| 44 |
41 43
|
elind |
|- ( y e. X -> { y } e. ( ~P X i^i Fin ) ) |
| 45 |
44
|
3ad2ant2 |
|- ( ( ph /\ y e. X /\ ( F ` y ) = +oo ) -> { y } e. ( ~P X i^i Fin ) ) |
| 46 |
3
|
adantr |
|- ( ( ph /\ y e. X ) -> F : X --> ( 0 [,] +oo ) ) |
| 47 |
|
snssi |
|- ( y e. X -> { y } C_ X ) |
| 48 |
47
|
adantl |
|- ( ( ph /\ y e. X ) -> { y } C_ X ) |
| 49 |
46 48
|
fssresd |
|- ( ( ph /\ y e. X ) -> ( F |` { y } ) : { y } --> ( 0 [,] +oo ) ) |
| 50 |
49
|
feqmptd |
|- ( ( ph /\ y e. X ) -> ( F |` { y } ) = ( x e. { y } |-> ( ( F |` { y } ) ` x ) ) ) |
| 51 |
|
fvres |
|- ( x e. { y } -> ( ( F |` { y } ) ` x ) = ( F ` x ) ) |
| 52 |
51
|
mpteq2ia |
|- ( x e. { y } |-> ( ( F |` { y } ) ` x ) ) = ( x e. { y } |-> ( F ` x ) ) |
| 53 |
52
|
a1i |
|- ( ( ph /\ y e. X ) -> ( x e. { y } |-> ( ( F |` { y } ) ` x ) ) = ( x e. { y } |-> ( F ` x ) ) ) |
| 54 |
50 53
|
eqtrd |
|- ( ( ph /\ y e. X ) -> ( F |` { y } ) = ( x e. { y } |-> ( F ` x ) ) ) |
| 55 |
54
|
oveq2d |
|- ( ( ph /\ y e. X ) -> ( G gsum ( F |` { y } ) ) = ( G gsum ( x e. { y } |-> ( F ` x ) ) ) ) |
| 56 |
55
|
3adant3 |
|- ( ( ph /\ y e. X /\ ( F ` y ) = +oo ) -> ( G gsum ( F |` { y } ) ) = ( G gsum ( x e. { y } |-> ( F ` x ) ) ) ) |
| 57 |
|
xrge0cmn |
|- ( RR*s |`s ( 0 [,] +oo ) ) e. CMnd |
| 58 |
1 57
|
eqeltri |
|- G e. CMnd |
| 59 |
|
cmnmnd |
|- ( G e. CMnd -> G e. Mnd ) |
| 60 |
58 59
|
ax-mp |
|- G e. Mnd |
| 61 |
60
|
a1i |
|- ( ( ph /\ y e. X /\ ( F ` y ) = +oo ) -> G e. Mnd ) |
| 62 |
|
simp2 |
|- ( ( ph /\ y e. X /\ ( F ` y ) = +oo ) -> y e. X ) |
| 63 |
3
|
ffvelcdmda |
|- ( ( ph /\ y e. X ) -> ( F ` y ) e. ( 0 [,] +oo ) ) |
| 64 |
63
|
3adant3 |
|- ( ( ph /\ y e. X /\ ( F ` y ) = +oo ) -> ( F ` y ) e. ( 0 [,] +oo ) ) |
| 65 |
|
dfss2 |
|- ( ( 0 [,] +oo ) C_ RR* <-> ( ( 0 [,] +oo ) i^i RR* ) = ( 0 [,] +oo ) ) |
| 66 |
21 65
|
mpbi |
|- ( ( 0 [,] +oo ) i^i RR* ) = ( 0 [,] +oo ) |
| 67 |
66
|
eqcomi |
|- ( 0 [,] +oo ) = ( ( 0 [,] +oo ) i^i RR* ) |
| 68 |
|
ovex |
|- ( 0 [,] +oo ) e. _V |
| 69 |
|
xrsbas |
|- RR* = ( Base ` RR*s ) |
| 70 |
1 69
|
ressbas |
|- ( ( 0 [,] +oo ) e. _V -> ( ( 0 [,] +oo ) i^i RR* ) = ( Base ` G ) ) |
| 71 |
68 70
|
ax-mp |
|- ( ( 0 [,] +oo ) i^i RR* ) = ( Base ` G ) |
| 72 |
67 71
|
eqtri |
|- ( 0 [,] +oo ) = ( Base ` G ) |
| 73 |
|
fveq2 |
|- ( x = y -> ( F ` x ) = ( F ` y ) ) |
| 74 |
72 73
|
gsumsn |
|- ( ( G e. Mnd /\ y e. X /\ ( F ` y ) e. ( 0 [,] +oo ) ) -> ( G gsum ( x e. { y } |-> ( F ` x ) ) ) = ( F ` y ) ) |
| 75 |
61 62 64 74
|
syl3anc |
|- ( ( ph /\ y e. X /\ ( F ` y ) = +oo ) -> ( G gsum ( x e. { y } |-> ( F ` x ) ) ) = ( F ` y ) ) |
| 76 |
|
simp3 |
|- ( ( ph /\ y e. X /\ ( F ` y ) = +oo ) -> ( F ` y ) = +oo ) |
| 77 |
56 75 76
|
3eqtrrd |
|- ( ( ph /\ y e. X /\ ( F ` y ) = +oo ) -> +oo = ( G gsum ( F |` { y } ) ) ) |
| 78 |
|
reseq2 |
|- ( x = { y } -> ( F |` x ) = ( F |` { y } ) ) |
| 79 |
78
|
oveq2d |
|- ( x = { y } -> ( G gsum ( F |` x ) ) = ( G gsum ( F |` { y } ) ) ) |
| 80 |
79
|
rspceeqv |
|- ( ( { y } e. ( ~P X i^i Fin ) /\ +oo = ( G gsum ( F |` { y } ) ) ) -> E. x e. ( ~P X i^i Fin ) +oo = ( G gsum ( F |` x ) ) ) |
| 81 |
45 77 80
|
syl2anc |
|- ( ( ph /\ y e. X /\ ( F ` y ) = +oo ) -> E. x e. ( ~P X i^i Fin ) +oo = ( G gsum ( F |` x ) ) ) |
| 82 |
|
pnfxr |
|- +oo e. RR* |
| 83 |
82
|
a1i |
|- ( ( ph /\ y e. X /\ ( F ` y ) = +oo ) -> +oo e. RR* ) |
| 84 |
38
|
elrnmpt |
|- ( +oo e. RR* -> ( +oo e. ran ( x e. ( ~P X i^i Fin ) |-> ( G gsum ( F |` x ) ) ) <-> E. x e. ( ~P X i^i Fin ) +oo = ( G gsum ( F |` x ) ) ) ) |
| 85 |
83 84
|
syl |
|- ( ( ph /\ y e. X /\ ( F ` y ) = +oo ) -> ( +oo e. ran ( x e. ( ~P X i^i Fin ) |-> ( G gsum ( F |` x ) ) ) <-> E. x e. ( ~P X i^i Fin ) +oo = ( G gsum ( F |` x ) ) ) ) |
| 86 |
81 85
|
mpbird |
|- ( ( ph /\ y e. X /\ ( F ` y ) = +oo ) -> +oo e. ran ( x e. ( ~P X i^i Fin ) |-> ( G gsum ( F |` x ) ) ) ) |
| 87 |
|
supxrpnf |
|- ( ( ran ( x e. ( ~P X i^i Fin ) |-> ( G gsum ( F |` x ) ) ) C_ RR* /\ +oo e. ran ( x e. ( ~P X i^i Fin ) |-> ( G gsum ( F |` x ) ) ) ) -> sup ( ran ( x e. ( ~P X i^i Fin ) |-> ( G gsum ( F |` x ) ) ) , RR* , < ) = +oo ) |
| 88 |
40 86 87
|
syl2anc |
|- ( ( ph /\ y e. X /\ ( F ` y ) = +oo ) -> sup ( ran ( x e. ( ~P X i^i Fin ) |-> ( G gsum ( F |` x ) ) ) , RR* , < ) = +oo ) |
| 89 |
88
|
3exp |
|- ( ph -> ( y e. X -> ( ( F ` y ) = +oo -> sup ( ran ( x e. ( ~P X i^i Fin ) |-> ( G gsum ( F |` x ) ) ) , RR* , < ) = +oo ) ) ) |
| 90 |
89
|
adantr |
|- ( ( ph /\ +oo e. ran F ) -> ( y e. X -> ( ( F ` y ) = +oo -> sup ( ran ( x e. ( ~P X i^i Fin ) |-> ( G gsum ( F |` x ) ) ) , RR* , < ) = +oo ) ) ) |
| 91 |
90
|
rexlimdv |
|- ( ( ph /\ +oo e. ran F ) -> ( E. y e. X ( F ` y ) = +oo -> sup ( ran ( x e. ( ~P X i^i Fin ) |-> ( G gsum ( F |` x ) ) ) , RR* , < ) = +oo ) ) |
| 92 |
20 91
|
mpd |
|- ( ( ph /\ +oo e. ran F ) -> sup ( ran ( x e. ( ~P X i^i Fin ) |-> ( G gsum ( F |` x ) ) ) , RR* , < ) = +oo ) |
| 93 |
15 92
|
eqtr4d |
|- ( ( ph /\ +oo e. ran F ) -> ( sum^ ` F ) = sup ( ran ( x e. ( ~P X i^i Fin ) |-> ( G gsum ( F |` x ) ) ) , RR* , < ) ) |
| 94 |
2
|
adantr |
|- ( ( ph /\ -. +oo e. ran F ) -> X e. V ) |
| 95 |
3
|
adantr |
|- ( ( ph /\ -. +oo e. ran F ) -> F : X --> ( 0 [,] +oo ) ) |
| 96 |
|
simpr |
|- ( ( ph /\ -. +oo e. ran F ) -> -. +oo e. ran F ) |
| 97 |
95 96
|
fge0iccico |
|- ( ( ph /\ -. +oo e. ran F ) -> F : X --> ( 0 [,) +oo ) ) |
| 98 |
94 97
|
sge0reval |
|- ( ( ph /\ -. +oo e. ran F ) -> ( sum^ ` F ) = sup ( ran ( x e. ( ~P X i^i Fin ) |-> sum_ y e. x ( F ` y ) ) , RR* , < ) ) |
| 99 |
23 27
|
feqresmpt |
|- ( ( ph /\ x e. ( ~P X i^i Fin ) ) -> ( F |` x ) = ( y e. x |-> ( F ` y ) ) ) |
| 100 |
99
|
adantlr |
|- ( ( ( ph /\ -. +oo e. ran F ) /\ x e. ( ~P X i^i Fin ) ) -> ( F |` x ) = ( y e. x |-> ( F ` y ) ) ) |
| 101 |
100
|
oveq2d |
|- ( ( ( ph /\ -. +oo e. ran F ) /\ x e. ( ~P X i^i Fin ) ) -> ( G gsum ( F |` x ) ) = ( G gsum ( y e. x |-> ( F ` y ) ) ) ) |
| 102 |
1
|
fveq2i |
|- ( +g ` G ) = ( +g ` ( RR*s |`s ( 0 [,] +oo ) ) ) |
| 103 |
|
eqid |
|- ( RR*s |`s ( 0 [,] +oo ) ) = ( RR*s |`s ( 0 [,] +oo ) ) |
| 104 |
|
xrsadd |
|- +e = ( +g ` RR*s ) |
| 105 |
103 104
|
ressplusg |
|- ( ( 0 [,] +oo ) e. _V -> +e = ( +g ` ( RR*s |`s ( 0 [,] +oo ) ) ) ) |
| 106 |
68 105
|
ax-mp |
|- +e = ( +g ` ( RR*s |`s ( 0 [,] +oo ) ) ) |
| 107 |
106
|
eqcomi |
|- ( +g ` ( RR*s |`s ( 0 [,] +oo ) ) ) = +e |
| 108 |
102 107
|
eqtr2i |
|- +e = ( +g ` G ) |
| 109 |
1
|
oveq1i |
|- ( G |`s ( 0 [,) +oo ) ) = ( ( RR*s |`s ( 0 [,] +oo ) ) |`s ( 0 [,) +oo ) ) |
| 110 |
|
icossicc |
|- ( 0 [,) +oo ) C_ ( 0 [,] +oo ) |
| 111 |
68 110
|
pm3.2i |
|- ( ( 0 [,] +oo ) e. _V /\ ( 0 [,) +oo ) C_ ( 0 [,] +oo ) ) |
| 112 |
|
ressabs |
|- ( ( ( 0 [,] +oo ) e. _V /\ ( 0 [,) +oo ) C_ ( 0 [,] +oo ) ) -> ( ( RR*s |`s ( 0 [,] +oo ) ) |`s ( 0 [,) +oo ) ) = ( RR*s |`s ( 0 [,) +oo ) ) ) |
| 113 |
111 112
|
ax-mp |
|- ( ( RR*s |`s ( 0 [,] +oo ) ) |`s ( 0 [,) +oo ) ) = ( RR*s |`s ( 0 [,) +oo ) ) |
| 114 |
109 113
|
eqtr2i |
|- ( RR*s |`s ( 0 [,) +oo ) ) = ( G |`s ( 0 [,) +oo ) ) |
| 115 |
58
|
elexi |
|- G e. _V |
| 116 |
115
|
a1i |
|- ( ( ( ph /\ -. +oo e. ran F ) /\ x e. ( ~P X i^i Fin ) ) -> G e. _V ) |
| 117 |
|
simpr |
|- ( ( ( ph /\ -. +oo e. ran F ) /\ x e. ( ~P X i^i Fin ) ) -> x e. ( ~P X i^i Fin ) ) |
| 118 |
110
|
a1i |
|- ( ( ( ph /\ -. +oo e. ran F ) /\ x e. ( ~P X i^i Fin ) ) -> ( 0 [,) +oo ) C_ ( 0 [,] +oo ) ) |
| 119 |
|
0xr |
|- 0 e. RR* |
| 120 |
119
|
a1i |
|- ( ( ( ( ph /\ -. +oo e. ran F ) /\ x e. ( ~P X i^i Fin ) ) /\ y e. x ) -> 0 e. RR* ) |
| 121 |
82
|
a1i |
|- ( ( ( ( ph /\ -. +oo e. ran F ) /\ x e. ( ~P X i^i Fin ) ) /\ y e. x ) -> +oo e. RR* ) |
| 122 |
95
|
ad2antrr |
|- ( ( ( ( ph /\ -. +oo e. ran F ) /\ x e. ( ~P X i^i Fin ) ) /\ y e. x ) -> F : X --> ( 0 [,] +oo ) ) |
| 123 |
26
|
sselda |
|- ( ( x e. ( ~P X i^i Fin ) /\ y e. x ) -> y e. X ) |
| 124 |
123
|
adantll |
|- ( ( ( ( ph /\ -. +oo e. ran F ) /\ x e. ( ~P X i^i Fin ) ) /\ y e. x ) -> y e. X ) |
| 125 |
122 124
|
ffvelcdmd |
|- ( ( ( ( ph /\ -. +oo e. ran F ) /\ x e. ( ~P X i^i Fin ) ) /\ y e. x ) -> ( F ` y ) e. ( 0 [,] +oo ) ) |
| 126 |
21 125
|
sselid |
|- ( ( ( ( ph /\ -. +oo e. ran F ) /\ x e. ( ~P X i^i Fin ) ) /\ y e. x ) -> ( F ` y ) e. RR* ) |
| 127 |
|
iccgelb |
|- ( ( 0 e. RR* /\ +oo e. RR* /\ ( F ` y ) e. ( 0 [,] +oo ) ) -> 0 <_ ( F ` y ) ) |
| 128 |
120 121 125 127
|
syl3anc |
|- ( ( ( ( ph /\ -. +oo e. ran F ) /\ x e. ( ~P X i^i Fin ) ) /\ y e. x ) -> 0 <_ ( F ` y ) ) |
| 129 |
|
id |
|- ( ( F ` y ) = +oo -> ( F ` y ) = +oo ) |
| 130 |
129
|
eqcomd |
|- ( ( F ` y ) = +oo -> +oo = ( F ` y ) ) |
| 131 |
130
|
adantl |
|- ( ( ( ( ph /\ x e. ( ~P X i^i Fin ) ) /\ y e. x ) /\ ( F ` y ) = +oo ) -> +oo = ( F ` y ) ) |
| 132 |
3
|
ffund |
|- ( ph -> Fun F ) |
| 133 |
132
|
ad2antrr |
|- ( ( ( ph /\ x e. ( ~P X i^i Fin ) ) /\ y e. x ) -> Fun F ) |
| 134 |
22 123
|
sylan |
|- ( ( ( ph /\ x e. ( ~P X i^i Fin ) ) /\ y e. x ) -> y e. X ) |
| 135 |
3
|
fdmd |
|- ( ph -> dom F = X ) |
| 136 |
135
|
eqcomd |
|- ( ph -> X = dom F ) |
| 137 |
136
|
ad2antrr |
|- ( ( ( ph /\ x e. ( ~P X i^i Fin ) ) /\ y e. x ) -> X = dom F ) |
| 138 |
134 137
|
eleqtrd |
|- ( ( ( ph /\ x e. ( ~P X i^i Fin ) ) /\ y e. x ) -> y e. dom F ) |
| 139 |
|
fvelrn |
|- ( ( Fun F /\ y e. dom F ) -> ( F ` y ) e. ran F ) |
| 140 |
133 138 139
|
syl2anc |
|- ( ( ( ph /\ x e. ( ~P X i^i Fin ) ) /\ y e. x ) -> ( F ` y ) e. ran F ) |
| 141 |
140
|
adantr |
|- ( ( ( ( ph /\ x e. ( ~P X i^i Fin ) ) /\ y e. x ) /\ ( F ` y ) = +oo ) -> ( F ` y ) e. ran F ) |
| 142 |
131 141
|
eqeltrd |
|- ( ( ( ( ph /\ x e. ( ~P X i^i Fin ) ) /\ y e. x ) /\ ( F ` y ) = +oo ) -> +oo e. ran F ) |
| 143 |
142
|
adantl3r |
|- ( ( ( ( ( ph /\ -. +oo e. ran F ) /\ x e. ( ~P X i^i Fin ) ) /\ y e. x ) /\ ( F ` y ) = +oo ) -> +oo e. ran F ) |
| 144 |
96
|
ad3antrrr |
|- ( ( ( ( ( ph /\ -. +oo e. ran F ) /\ x e. ( ~P X i^i Fin ) ) /\ y e. x ) /\ ( F ` y ) = +oo ) -> -. +oo e. ran F ) |
| 145 |
143 144
|
pm2.65da |
|- ( ( ( ( ph /\ -. +oo e. ran F ) /\ x e. ( ~P X i^i Fin ) ) /\ y e. x ) -> -. ( F ` y ) = +oo ) |
| 146 |
145
|
neqned |
|- ( ( ( ( ph /\ -. +oo e. ran F ) /\ x e. ( ~P X i^i Fin ) ) /\ y e. x ) -> ( F ` y ) =/= +oo ) |
| 147 |
|
ge0xrre |
|- ( ( ( F ` y ) e. ( 0 [,] +oo ) /\ ( F ` y ) =/= +oo ) -> ( F ` y ) e. RR ) |
| 148 |
125 146 147
|
syl2anc |
|- ( ( ( ( ph /\ -. +oo e. ran F ) /\ x e. ( ~P X i^i Fin ) ) /\ y e. x ) -> ( F ` y ) e. RR ) |
| 149 |
148
|
ltpnfd |
|- ( ( ( ( ph /\ -. +oo e. ran F ) /\ x e. ( ~P X i^i Fin ) ) /\ y e. x ) -> ( F ` y ) < +oo ) |
| 150 |
120 121 126 128 149
|
elicod |
|- ( ( ( ( ph /\ -. +oo e. ran F ) /\ x e. ( ~P X i^i Fin ) ) /\ y e. x ) -> ( F ` y ) e. ( 0 [,) +oo ) ) |
| 151 |
|
eqid |
|- ( y e. x |-> ( F ` y ) ) = ( y e. x |-> ( F ` y ) ) |
| 152 |
150 151
|
fmptd |
|- ( ( ( ph /\ -. +oo e. ran F ) /\ x e. ( ~P X i^i Fin ) ) -> ( y e. x |-> ( F ` y ) ) : x --> ( 0 [,) +oo ) ) |
| 153 |
|
0e0icopnf |
|- 0 e. ( 0 [,) +oo ) |
| 154 |
153
|
a1i |
|- ( ( ( ph /\ -. +oo e. ran F ) /\ x e. ( ~P X i^i Fin ) ) -> 0 e. ( 0 [,) +oo ) ) |
| 155 |
|
eliccxr |
|- ( y e. ( 0 [,] +oo ) -> y e. RR* ) |
| 156 |
|
xaddlid |
|- ( y e. RR* -> ( 0 +e y ) = y ) |
| 157 |
|
xaddrid |
|- ( y e. RR* -> ( y +e 0 ) = y ) |
| 158 |
156 157
|
jca |
|- ( y e. RR* -> ( ( 0 +e y ) = y /\ ( y +e 0 ) = y ) ) |
| 159 |
155 158
|
syl |
|- ( y e. ( 0 [,] +oo ) -> ( ( 0 +e y ) = y /\ ( y +e 0 ) = y ) ) |
| 160 |
159
|
adantl |
|- ( ( ( ( ph /\ -. +oo e. ran F ) /\ x e. ( ~P X i^i Fin ) ) /\ y e. ( 0 [,] +oo ) ) -> ( ( 0 +e y ) = y /\ ( y +e 0 ) = y ) ) |
| 161 |
72 108 114 116 117 118 152 154 160
|
gsumress |
|- ( ( ( ph /\ -. +oo e. ran F ) /\ x e. ( ~P X i^i Fin ) ) -> ( G gsum ( y e. x |-> ( F ` y ) ) ) = ( ( RR*s |`s ( 0 [,) +oo ) ) gsum ( y e. x |-> ( F ` y ) ) ) ) |
| 162 |
|
rege0subm |
|- ( 0 [,) +oo ) e. ( SubMnd ` CCfld ) |
| 163 |
162
|
a1i |
|- ( ( ( ph /\ -. +oo e. ran F ) /\ x e. ( ~P X i^i Fin ) ) -> ( 0 [,) +oo ) e. ( SubMnd ` CCfld ) ) |
| 164 |
|
eqid |
|- ( CCfld |`s ( 0 [,) +oo ) ) = ( CCfld |`s ( 0 [,) +oo ) ) |
| 165 |
117 163 152 164
|
gsumsubm |
|- ( ( ( ph /\ -. +oo e. ran F ) /\ x e. ( ~P X i^i Fin ) ) -> ( CCfld gsum ( y e. x |-> ( F ` y ) ) ) = ( ( CCfld |`s ( 0 [,) +oo ) ) gsum ( y e. x |-> ( F ` y ) ) ) ) |
| 166 |
|
eqidd |
|- ( ( ( ph /\ -. +oo e. ran F ) /\ x e. ( ~P X i^i Fin ) ) -> ( ( CCfld |`s ( 0 [,) +oo ) ) gsum ( y e. x |-> ( F ` y ) ) ) = ( ( CCfld |`s ( 0 [,) +oo ) ) gsum ( y e. x |-> ( F ` y ) ) ) ) |
| 167 |
|
vex |
|- x e. _V |
| 168 |
167
|
mptex |
|- ( y e. x |-> ( F ` y ) ) e. _V |
| 169 |
168
|
a1i |
|- ( ( ( ph /\ -. +oo e. ran F ) /\ x e. ( ~P X i^i Fin ) ) -> ( y e. x |-> ( F ` y ) ) e. _V ) |
| 170 |
|
ovexd |
|- ( ( ( ph /\ -. +oo e. ran F ) /\ x e. ( ~P X i^i Fin ) ) -> ( CCfld |`s ( 0 [,) +oo ) ) e. _V ) |
| 171 |
|
ovexd |
|- ( ( ( ph /\ -. +oo e. ran F ) /\ x e. ( ~P X i^i Fin ) ) -> ( RR*s |`s ( 0 [,) +oo ) ) e. _V ) |
| 172 |
|
rge0ssre |
|- ( 0 [,) +oo ) C_ RR |
| 173 |
|
ax-resscn |
|- RR C_ CC |
| 174 |
172 173
|
sstri |
|- ( 0 [,) +oo ) C_ CC |
| 175 |
|
cnfldbas |
|- CC = ( Base ` CCfld ) |
| 176 |
164 175
|
ressbas2 |
|- ( ( 0 [,) +oo ) C_ CC -> ( 0 [,) +oo ) = ( Base ` ( CCfld |`s ( 0 [,) +oo ) ) ) ) |
| 177 |
174 176
|
ax-mp |
|- ( 0 [,) +oo ) = ( Base ` ( CCfld |`s ( 0 [,) +oo ) ) ) |
| 178 |
177
|
eqcomi |
|- ( Base ` ( CCfld |`s ( 0 [,) +oo ) ) ) = ( 0 [,) +oo ) |
| 179 |
110 21
|
sstri |
|- ( 0 [,) +oo ) C_ RR* |
| 180 |
|
eqid |
|- ( RR*s |`s ( 0 [,) +oo ) ) = ( RR*s |`s ( 0 [,) +oo ) ) |
| 181 |
180 69
|
ressbas2 |
|- ( ( 0 [,) +oo ) C_ RR* -> ( 0 [,) +oo ) = ( Base ` ( RR*s |`s ( 0 [,) +oo ) ) ) ) |
| 182 |
179 181
|
ax-mp |
|- ( 0 [,) +oo ) = ( Base ` ( RR*s |`s ( 0 [,) +oo ) ) ) |
| 183 |
178 182
|
eqtri |
|- ( Base ` ( CCfld |`s ( 0 [,) +oo ) ) ) = ( Base ` ( RR*s |`s ( 0 [,) +oo ) ) ) |
| 184 |
183
|
a1i |
|- ( ( ( ph /\ -. +oo e. ran F ) /\ x e. ( ~P X i^i Fin ) ) -> ( Base ` ( CCfld |`s ( 0 [,) +oo ) ) ) = ( Base ` ( RR*s |`s ( 0 [,) +oo ) ) ) ) |
| 185 |
|
rge0srg |
|- ( CCfld |`s ( 0 [,) +oo ) ) e. SRing |
| 186 |
185
|
a1i |
|- ( ( s e. ( Base ` ( CCfld |`s ( 0 [,) +oo ) ) ) /\ t e. ( Base ` ( CCfld |`s ( 0 [,) +oo ) ) ) ) -> ( CCfld |`s ( 0 [,) +oo ) ) e. SRing ) |
| 187 |
|
simpl |
|- ( ( s e. ( Base ` ( CCfld |`s ( 0 [,) +oo ) ) ) /\ t e. ( Base ` ( CCfld |`s ( 0 [,) +oo ) ) ) ) -> s e. ( Base ` ( CCfld |`s ( 0 [,) +oo ) ) ) ) |
| 188 |
|
simpr |
|- ( ( s e. ( Base ` ( CCfld |`s ( 0 [,) +oo ) ) ) /\ t e. ( Base ` ( CCfld |`s ( 0 [,) +oo ) ) ) ) -> t e. ( Base ` ( CCfld |`s ( 0 [,) +oo ) ) ) ) |
| 189 |
|
eqid |
|- ( Base ` ( CCfld |`s ( 0 [,) +oo ) ) ) = ( Base ` ( CCfld |`s ( 0 [,) +oo ) ) ) |
| 190 |
|
eqid |
|- ( +g ` ( CCfld |`s ( 0 [,) +oo ) ) ) = ( +g ` ( CCfld |`s ( 0 [,) +oo ) ) ) |
| 191 |
189 190
|
srgacl |
|- ( ( ( CCfld |`s ( 0 [,) +oo ) ) e. SRing /\ s e. ( Base ` ( CCfld |`s ( 0 [,) +oo ) ) ) /\ t e. ( Base ` ( CCfld |`s ( 0 [,) +oo ) ) ) ) -> ( s ( +g ` ( CCfld |`s ( 0 [,) +oo ) ) ) t ) e. ( Base ` ( CCfld |`s ( 0 [,) +oo ) ) ) ) |
| 192 |
186 187 188 191
|
syl3anc |
|- ( ( s e. ( Base ` ( CCfld |`s ( 0 [,) +oo ) ) ) /\ t e. ( Base ` ( CCfld |`s ( 0 [,) +oo ) ) ) ) -> ( s ( +g ` ( CCfld |`s ( 0 [,) +oo ) ) ) t ) e. ( Base ` ( CCfld |`s ( 0 [,) +oo ) ) ) ) |
| 193 |
192
|
adantl |
|- ( ( ( ( ph /\ -. +oo e. ran F ) /\ x e. ( ~P X i^i Fin ) ) /\ ( s e. ( Base ` ( CCfld |`s ( 0 [,) +oo ) ) ) /\ t e. ( Base ` ( CCfld |`s ( 0 [,) +oo ) ) ) ) ) -> ( s ( +g ` ( CCfld |`s ( 0 [,) +oo ) ) ) t ) e. ( Base ` ( CCfld |`s ( 0 [,) +oo ) ) ) ) |
| 194 |
172
|
a1i |
|- ( s e. ( Base ` ( CCfld |`s ( 0 [,) +oo ) ) ) -> ( 0 [,) +oo ) C_ RR ) |
| 195 |
|
id |
|- ( s e. ( Base ` ( CCfld |`s ( 0 [,) +oo ) ) ) -> s e. ( Base ` ( CCfld |`s ( 0 [,) +oo ) ) ) ) |
| 196 |
195 178
|
eleqtrdi |
|- ( s e. ( Base ` ( CCfld |`s ( 0 [,) +oo ) ) ) -> s e. ( 0 [,) +oo ) ) |
| 197 |
194 196
|
sseldd |
|- ( s e. ( Base ` ( CCfld |`s ( 0 [,) +oo ) ) ) -> s e. RR ) |
| 198 |
197
|
adantr |
|- ( ( s e. ( Base ` ( CCfld |`s ( 0 [,) +oo ) ) ) /\ t e. ( Base ` ( CCfld |`s ( 0 [,) +oo ) ) ) ) -> s e. RR ) |
| 199 |
172
|
a1i |
|- ( t e. ( Base ` ( CCfld |`s ( 0 [,) +oo ) ) ) -> ( 0 [,) +oo ) C_ RR ) |
| 200 |
|
id |
|- ( t e. ( Base ` ( CCfld |`s ( 0 [,) +oo ) ) ) -> t e. ( Base ` ( CCfld |`s ( 0 [,) +oo ) ) ) ) |
| 201 |
200 178
|
eleqtrdi |
|- ( t e. ( Base ` ( CCfld |`s ( 0 [,) +oo ) ) ) -> t e. ( 0 [,) +oo ) ) |
| 202 |
199 201
|
sseldd |
|- ( t e. ( Base ` ( CCfld |`s ( 0 [,) +oo ) ) ) -> t e. RR ) |
| 203 |
202
|
adantl |
|- ( ( s e. ( Base ` ( CCfld |`s ( 0 [,) +oo ) ) ) /\ t e. ( Base ` ( CCfld |`s ( 0 [,) +oo ) ) ) ) -> t e. RR ) |
| 204 |
|
rexadd |
|- ( ( s e. RR /\ t e. RR ) -> ( s +e t ) = ( s + t ) ) |
| 205 |
204
|
eqcomd |
|- ( ( s e. RR /\ t e. RR ) -> ( s + t ) = ( s +e t ) ) |
| 206 |
162
|
elexi |
|- ( 0 [,) +oo ) e. _V |
| 207 |
|
cnfldadd |
|- + = ( +g ` CCfld ) |
| 208 |
164 207
|
ressplusg |
|- ( ( 0 [,) +oo ) e. _V -> + = ( +g ` ( CCfld |`s ( 0 [,) +oo ) ) ) ) |
| 209 |
206 208
|
ax-mp |
|- + = ( +g ` ( CCfld |`s ( 0 [,) +oo ) ) ) |
| 210 |
209 207
|
eqtr3i |
|- ( +g ` ( CCfld |`s ( 0 [,) +oo ) ) ) = ( +g ` CCfld ) |
| 211 |
210 207
|
eqtr4i |
|- ( +g ` ( CCfld |`s ( 0 [,) +oo ) ) ) = + |
| 212 |
211
|
oveqi |
|- ( s ( +g ` ( CCfld |`s ( 0 [,) +oo ) ) ) t ) = ( s + t ) |
| 213 |
212
|
a1i |
|- ( ( s e. RR /\ t e. RR ) -> ( s ( +g ` ( CCfld |`s ( 0 [,) +oo ) ) ) t ) = ( s + t ) ) |
| 214 |
180 104
|
ressplusg |
|- ( ( 0 [,) +oo ) e. _V -> +e = ( +g ` ( RR*s |`s ( 0 [,) +oo ) ) ) ) |
| 215 |
206 214
|
ax-mp |
|- +e = ( +g ` ( RR*s |`s ( 0 [,) +oo ) ) ) |
| 216 |
215
|
eqcomi |
|- ( +g ` ( RR*s |`s ( 0 [,) +oo ) ) ) = +e |
| 217 |
216
|
oveqi |
|- ( s ( +g ` ( RR*s |`s ( 0 [,) +oo ) ) ) t ) = ( s +e t ) |
| 218 |
217
|
a1i |
|- ( ( s e. RR /\ t e. RR ) -> ( s ( +g ` ( RR*s |`s ( 0 [,) +oo ) ) ) t ) = ( s +e t ) ) |
| 219 |
205 213 218
|
3eqtr4d |
|- ( ( s e. RR /\ t e. RR ) -> ( s ( +g ` ( CCfld |`s ( 0 [,) +oo ) ) ) t ) = ( s ( +g ` ( RR*s |`s ( 0 [,) +oo ) ) ) t ) ) |
| 220 |
198 203 219
|
syl2anc |
|- ( ( s e. ( Base ` ( CCfld |`s ( 0 [,) +oo ) ) ) /\ t e. ( Base ` ( CCfld |`s ( 0 [,) +oo ) ) ) ) -> ( s ( +g ` ( CCfld |`s ( 0 [,) +oo ) ) ) t ) = ( s ( +g ` ( RR*s |`s ( 0 [,) +oo ) ) ) t ) ) |
| 221 |
220
|
adantl |
|- ( ( ( ( ph /\ -. +oo e. ran F ) /\ x e. ( ~P X i^i Fin ) ) /\ ( s e. ( Base ` ( CCfld |`s ( 0 [,) +oo ) ) ) /\ t e. ( Base ` ( CCfld |`s ( 0 [,) +oo ) ) ) ) ) -> ( s ( +g ` ( CCfld |`s ( 0 [,) +oo ) ) ) t ) = ( s ( +g ` ( RR*s |`s ( 0 [,) +oo ) ) ) t ) ) |
| 222 |
|
funmpt |
|- Fun ( y e. x |-> ( F ` y ) ) |
| 223 |
222
|
a1i |
|- ( ( ( ph /\ -. +oo e. ran F ) /\ x e. ( ~P X i^i Fin ) ) -> Fun ( y e. x |-> ( F ` y ) ) ) |
| 224 |
150 177
|
eleqtrdi |
|- ( ( ( ( ph /\ -. +oo e. ran F ) /\ x e. ( ~P X i^i Fin ) ) /\ y e. x ) -> ( F ` y ) e. ( Base ` ( CCfld |`s ( 0 [,) +oo ) ) ) ) |
| 225 |
224
|
ralrimiva |
|- ( ( ( ph /\ -. +oo e. ran F ) /\ x e. ( ~P X i^i Fin ) ) -> A. y e. x ( F ` y ) e. ( Base ` ( CCfld |`s ( 0 [,) +oo ) ) ) ) |
| 226 |
151
|
rnmptss |
|- ( A. y e. x ( F ` y ) e. ( Base ` ( CCfld |`s ( 0 [,) +oo ) ) ) -> ran ( y e. x |-> ( F ` y ) ) C_ ( Base ` ( CCfld |`s ( 0 [,) +oo ) ) ) ) |
| 227 |
225 226
|
syl |
|- ( ( ( ph /\ -. +oo e. ran F ) /\ x e. ( ~P X i^i Fin ) ) -> ran ( y e. x |-> ( F ` y ) ) C_ ( Base ` ( CCfld |`s ( 0 [,) +oo ) ) ) ) |
| 228 |
169 170 171 184 193 221 223 227
|
gsumpropd2 |
|- ( ( ( ph /\ -. +oo e. ran F ) /\ x e. ( ~P X i^i Fin ) ) -> ( ( CCfld |`s ( 0 [,) +oo ) ) gsum ( y e. x |-> ( F ` y ) ) ) = ( ( RR*s |`s ( 0 [,) +oo ) ) gsum ( y e. x |-> ( F ` y ) ) ) ) |
| 229 |
165 166 228
|
3eqtrd |
|- ( ( ( ph /\ -. +oo e. ran F ) /\ x e. ( ~P X i^i Fin ) ) -> ( CCfld gsum ( y e. x |-> ( F ` y ) ) ) = ( ( RR*s |`s ( 0 [,) +oo ) ) gsum ( y e. x |-> ( F ` y ) ) ) ) |
| 230 |
30
|
adantl |
|- ( ( ( ph /\ -. +oo e. ran F ) /\ x e. ( ~P X i^i Fin ) ) -> x e. Fin ) |
| 231 |
148
|
recnd |
|- ( ( ( ( ph /\ -. +oo e. ran F ) /\ x e. ( ~P X i^i Fin ) ) /\ y e. x ) -> ( F ` y ) e. CC ) |
| 232 |
230 231
|
gsumfsum |
|- ( ( ( ph /\ -. +oo e. ran F ) /\ x e. ( ~P X i^i Fin ) ) -> ( CCfld gsum ( y e. x |-> ( F ` y ) ) ) = sum_ y e. x ( F ` y ) ) |
| 233 |
229 232
|
eqtr3d |
|- ( ( ( ph /\ -. +oo e. ran F ) /\ x e. ( ~P X i^i Fin ) ) -> ( ( RR*s |`s ( 0 [,) +oo ) ) gsum ( y e. x |-> ( F ` y ) ) ) = sum_ y e. x ( F ` y ) ) |
| 234 |
101 161 233
|
3eqtrrd |
|- ( ( ( ph /\ -. +oo e. ran F ) /\ x e. ( ~P X i^i Fin ) ) -> sum_ y e. x ( F ` y ) = ( G gsum ( F |` x ) ) ) |
| 235 |
234
|
mpteq2dva |
|- ( ( ph /\ -. +oo e. ran F ) -> ( x e. ( ~P X i^i Fin ) |-> sum_ y e. x ( F ` y ) ) = ( x e. ( ~P X i^i Fin ) |-> ( G gsum ( F |` x ) ) ) ) |
| 236 |
235
|
rneqd |
|- ( ( ph /\ -. +oo e. ran F ) -> ran ( x e. ( ~P X i^i Fin ) |-> sum_ y e. x ( F ` y ) ) = ran ( x e. ( ~P X i^i Fin ) |-> ( G gsum ( F |` x ) ) ) ) |
| 237 |
236
|
supeq1d |
|- ( ( ph /\ -. +oo e. ran F ) -> sup ( ran ( x e. ( ~P X i^i Fin ) |-> sum_ y e. x ( F ` y ) ) , RR* , < ) = sup ( ran ( x e. ( ~P X i^i Fin ) |-> ( G gsum ( F |` x ) ) ) , RR* , < ) ) |
| 238 |
98 237
|
eqtrd |
|- ( ( ph /\ -. +oo e. ran F ) -> ( sum^ ` F ) = sup ( ran ( x e. ( ~P X i^i Fin ) |-> ( G gsum ( F |` x ) ) ) , RR* , < ) ) |
| 239 |
93 238
|
pm2.61dan |
|- ( ph -> ( sum^ ` F ) = sup ( ran ( x e. ( ~P X i^i Fin ) |-> ( G gsum ( F |` x ) ) ) , RR* , < ) ) |
| 240 |
1 2 3 4
|
xrge0tsms |
|- ( ph -> ( G tsums F ) = { sup ( ran ( x e. ( ~P X i^i Fin ) |-> ( G gsum ( F |` x ) ) ) , RR* , < ) } ) |
| 241 |
239 240
|
eleq12d |
|- ( ph -> ( ( sum^ ` F ) e. ( G tsums F ) <-> sup ( ran ( x e. ( ~P X i^i Fin ) |-> ( G gsum ( F |` x ) ) ) , RR* , < ) e. { sup ( ran ( x e. ( ~P X i^i Fin ) |-> ( G gsum ( F |` x ) ) ) , RR* , < ) } ) ) |
| 242 |
11 241
|
mpbird |
|- ( ph -> ( sum^ ` F ) e. ( G tsums F ) ) |