Step |
Hyp |
Ref |
Expression |
1 |
|
sge0tsms.g |
|- G = ( RR*s |`s ( 0 [,] +oo ) ) |
2 |
|
sge0tsms.x |
|- ( ph -> X e. V ) |
3 |
|
sge0tsms.f |
|- ( ph -> F : X --> ( 0 [,] +oo ) ) |
4 |
|
eqid |
|- sup ( ran ( x e. ( ~P X i^i Fin ) |-> ( G gsum ( F |` x ) ) ) , RR* , < ) = sup ( ran ( x e. ( ~P X i^i Fin ) |-> ( G gsum ( F |` x ) ) ) , RR* , < ) |
5 |
4
|
a1i |
|- ( ph -> sup ( ran ( x e. ( ~P X i^i Fin ) |-> ( G gsum ( F |` x ) ) ) , RR* , < ) = sup ( ran ( x e. ( ~P X i^i Fin ) |-> ( G gsum ( F |` x ) ) ) , RR* , < ) ) |
6 |
|
xrltso |
|- < Or RR* |
7 |
6
|
supex |
|- sup ( ran ( x e. ( ~P X i^i Fin ) |-> ( G gsum ( F |` x ) ) ) , RR* , < ) e. _V |
8 |
7
|
a1i |
|- ( ph -> sup ( ran ( x e. ( ~P X i^i Fin ) |-> ( G gsum ( F |` x ) ) ) , RR* , < ) e. _V ) |
9 |
|
elsng |
|- ( sup ( ran ( x e. ( ~P X i^i Fin ) |-> ( G gsum ( F |` x ) ) ) , RR* , < ) e. _V -> ( sup ( ran ( x e. ( ~P X i^i Fin ) |-> ( G gsum ( F |` x ) ) ) , RR* , < ) e. { sup ( ran ( x e. ( ~P X i^i Fin ) |-> ( G gsum ( F |` x ) ) ) , RR* , < ) } <-> sup ( ran ( x e. ( ~P X i^i Fin ) |-> ( G gsum ( F |` x ) ) ) , RR* , < ) = sup ( ran ( x e. ( ~P X i^i Fin ) |-> ( G gsum ( F |` x ) ) ) , RR* , < ) ) ) |
10 |
8 9
|
syl |
|- ( ph -> ( sup ( ran ( x e. ( ~P X i^i Fin ) |-> ( G gsum ( F |` x ) ) ) , RR* , < ) e. { sup ( ran ( x e. ( ~P X i^i Fin ) |-> ( G gsum ( F |` x ) ) ) , RR* , < ) } <-> sup ( ran ( x e. ( ~P X i^i Fin ) |-> ( G gsum ( F |` x ) ) ) , RR* , < ) = sup ( ran ( x e. ( ~P X i^i Fin ) |-> ( G gsum ( F |` x ) ) ) , RR* , < ) ) ) |
11 |
5 10
|
mpbird |
|- ( ph -> sup ( ran ( x e. ( ~P X i^i Fin ) |-> ( G gsum ( F |` x ) ) ) , RR* , < ) e. { sup ( ran ( x e. ( ~P X i^i Fin ) |-> ( G gsum ( F |` x ) ) ) , RR* , < ) } ) |
12 |
2
|
adantr |
|- ( ( ph /\ +oo e. ran F ) -> X e. V ) |
13 |
3
|
adantr |
|- ( ( ph /\ +oo e. ran F ) -> F : X --> ( 0 [,] +oo ) ) |
14 |
|
simpr |
|- ( ( ph /\ +oo e. ran F ) -> +oo e. ran F ) |
15 |
12 13 14
|
sge0pnfval |
|- ( ( ph /\ +oo e. ran F ) -> ( sum^ ` F ) = +oo ) |
16 |
3
|
ffnd |
|- ( ph -> F Fn X ) |
17 |
16
|
adantr |
|- ( ( ph /\ +oo e. ran F ) -> F Fn X ) |
18 |
|
fvelrnb |
|- ( F Fn X -> ( +oo e. ran F <-> E. y e. X ( F ` y ) = +oo ) ) |
19 |
17 18
|
syl |
|- ( ( ph /\ +oo e. ran F ) -> ( +oo e. ran F <-> E. y e. X ( F ` y ) = +oo ) ) |
20 |
14 19
|
mpbid |
|- ( ( ph /\ +oo e. ran F ) -> E. y e. X ( F ` y ) = +oo ) |
21 |
|
iccssxr |
|- ( 0 [,] +oo ) C_ RR* |
22 |
|
simpr |
|- ( ( ph /\ x e. ( ~P X i^i Fin ) ) -> x e. ( ~P X i^i Fin ) ) |
23 |
3
|
adantr |
|- ( ( ph /\ x e. ( ~P X i^i Fin ) ) -> F : X --> ( 0 [,] +oo ) ) |
24 |
|
elinel1 |
|- ( x e. ( ~P X i^i Fin ) -> x e. ~P X ) |
25 |
|
elpwi |
|- ( x e. ~P X -> x C_ X ) |
26 |
24 25
|
syl |
|- ( x e. ( ~P X i^i Fin ) -> x C_ X ) |
27 |
26
|
adantl |
|- ( ( ph /\ x e. ( ~P X i^i Fin ) ) -> x C_ X ) |
28 |
|
fssres |
|- ( ( F : X --> ( 0 [,] +oo ) /\ x C_ X ) -> ( F |` x ) : x --> ( 0 [,] +oo ) ) |
29 |
23 27 28
|
syl2anc |
|- ( ( ph /\ x e. ( ~P X i^i Fin ) ) -> ( F |` x ) : x --> ( 0 [,] +oo ) ) |
30 |
|
elinel2 |
|- ( x e. ( ~P X i^i Fin ) -> x e. Fin ) |
31 |
30
|
adantl |
|- ( ( ph /\ x e. ( ~P X i^i Fin ) ) -> x e. Fin ) |
32 |
|
0red |
|- ( ( ph /\ x e. ( ~P X i^i Fin ) ) -> 0 e. RR ) |
33 |
29 31 32
|
fdmfifsupp |
|- ( ( ph /\ x e. ( ~P X i^i Fin ) ) -> ( F |` x ) finSupp 0 ) |
34 |
1 22 29 33
|
gsumge0cl |
|- ( ( ph /\ x e. ( ~P X i^i Fin ) ) -> ( G gsum ( F |` x ) ) e. ( 0 [,] +oo ) ) |
35 |
21 34
|
sselid |
|- ( ( ph /\ x e. ( ~P X i^i Fin ) ) -> ( G gsum ( F |` x ) ) e. RR* ) |
36 |
35
|
ralrimiva |
|- ( ph -> A. x e. ( ~P X i^i Fin ) ( G gsum ( F |` x ) ) e. RR* ) |
37 |
36
|
3ad2ant1 |
|- ( ( ph /\ y e. X /\ ( F ` y ) = +oo ) -> A. x e. ( ~P X i^i Fin ) ( G gsum ( F |` x ) ) e. RR* ) |
38 |
|
eqid |
|- ( x e. ( ~P X i^i Fin ) |-> ( G gsum ( F |` x ) ) ) = ( x e. ( ~P X i^i Fin ) |-> ( G gsum ( F |` x ) ) ) |
39 |
38
|
rnmptss |
|- ( A. x e. ( ~P X i^i Fin ) ( G gsum ( F |` x ) ) e. RR* -> ran ( x e. ( ~P X i^i Fin ) |-> ( G gsum ( F |` x ) ) ) C_ RR* ) |
40 |
37 39
|
syl |
|- ( ( ph /\ y e. X /\ ( F ` y ) = +oo ) -> ran ( x e. ( ~P X i^i Fin ) |-> ( G gsum ( F |` x ) ) ) C_ RR* ) |
41 |
|
snelpwi |
|- ( y e. X -> { y } e. ~P X ) |
42 |
|
snfi |
|- { y } e. Fin |
43 |
42
|
a1i |
|- ( y e. X -> { y } e. Fin ) |
44 |
41 43
|
elind |
|- ( y e. X -> { y } e. ( ~P X i^i Fin ) ) |
45 |
44
|
3ad2ant2 |
|- ( ( ph /\ y e. X /\ ( F ` y ) = +oo ) -> { y } e. ( ~P X i^i Fin ) ) |
46 |
3
|
adantr |
|- ( ( ph /\ y e. X ) -> F : X --> ( 0 [,] +oo ) ) |
47 |
|
snssi |
|- ( y e. X -> { y } C_ X ) |
48 |
47
|
adantl |
|- ( ( ph /\ y e. X ) -> { y } C_ X ) |
49 |
46 48
|
fssresd |
|- ( ( ph /\ y e. X ) -> ( F |` { y } ) : { y } --> ( 0 [,] +oo ) ) |
50 |
49
|
feqmptd |
|- ( ( ph /\ y e. X ) -> ( F |` { y } ) = ( x e. { y } |-> ( ( F |` { y } ) ` x ) ) ) |
51 |
|
fvres |
|- ( x e. { y } -> ( ( F |` { y } ) ` x ) = ( F ` x ) ) |
52 |
51
|
mpteq2ia |
|- ( x e. { y } |-> ( ( F |` { y } ) ` x ) ) = ( x e. { y } |-> ( F ` x ) ) |
53 |
52
|
a1i |
|- ( ( ph /\ y e. X ) -> ( x e. { y } |-> ( ( F |` { y } ) ` x ) ) = ( x e. { y } |-> ( F ` x ) ) ) |
54 |
50 53
|
eqtrd |
|- ( ( ph /\ y e. X ) -> ( F |` { y } ) = ( x e. { y } |-> ( F ` x ) ) ) |
55 |
54
|
oveq2d |
|- ( ( ph /\ y e. X ) -> ( G gsum ( F |` { y } ) ) = ( G gsum ( x e. { y } |-> ( F ` x ) ) ) ) |
56 |
55
|
3adant3 |
|- ( ( ph /\ y e. X /\ ( F ` y ) = +oo ) -> ( G gsum ( F |` { y } ) ) = ( G gsum ( x e. { y } |-> ( F ` x ) ) ) ) |
57 |
|
xrge0cmn |
|- ( RR*s |`s ( 0 [,] +oo ) ) e. CMnd |
58 |
1 57
|
eqeltri |
|- G e. CMnd |
59 |
|
cmnmnd |
|- ( G e. CMnd -> G e. Mnd ) |
60 |
58 59
|
ax-mp |
|- G e. Mnd |
61 |
60
|
a1i |
|- ( ( ph /\ y e. X /\ ( F ` y ) = +oo ) -> G e. Mnd ) |
62 |
|
simp2 |
|- ( ( ph /\ y e. X /\ ( F ` y ) = +oo ) -> y e. X ) |
63 |
3
|
ffvelrnda |
|- ( ( ph /\ y e. X ) -> ( F ` y ) e. ( 0 [,] +oo ) ) |
64 |
63
|
3adant3 |
|- ( ( ph /\ y e. X /\ ( F ` y ) = +oo ) -> ( F ` y ) e. ( 0 [,] +oo ) ) |
65 |
|
df-ss |
|- ( ( 0 [,] +oo ) C_ RR* <-> ( ( 0 [,] +oo ) i^i RR* ) = ( 0 [,] +oo ) ) |
66 |
21 65
|
mpbi |
|- ( ( 0 [,] +oo ) i^i RR* ) = ( 0 [,] +oo ) |
67 |
66
|
eqcomi |
|- ( 0 [,] +oo ) = ( ( 0 [,] +oo ) i^i RR* ) |
68 |
|
ovex |
|- ( 0 [,] +oo ) e. _V |
69 |
|
xrsbas |
|- RR* = ( Base ` RR*s ) |
70 |
1 69
|
ressbas |
|- ( ( 0 [,] +oo ) e. _V -> ( ( 0 [,] +oo ) i^i RR* ) = ( Base ` G ) ) |
71 |
68 70
|
ax-mp |
|- ( ( 0 [,] +oo ) i^i RR* ) = ( Base ` G ) |
72 |
67 71
|
eqtri |
|- ( 0 [,] +oo ) = ( Base ` G ) |
73 |
|
fveq2 |
|- ( x = y -> ( F ` x ) = ( F ` y ) ) |
74 |
72 73
|
gsumsn |
|- ( ( G e. Mnd /\ y e. X /\ ( F ` y ) e. ( 0 [,] +oo ) ) -> ( G gsum ( x e. { y } |-> ( F ` x ) ) ) = ( F ` y ) ) |
75 |
61 62 64 74
|
syl3anc |
|- ( ( ph /\ y e. X /\ ( F ` y ) = +oo ) -> ( G gsum ( x e. { y } |-> ( F ` x ) ) ) = ( F ` y ) ) |
76 |
|
simp3 |
|- ( ( ph /\ y e. X /\ ( F ` y ) = +oo ) -> ( F ` y ) = +oo ) |
77 |
56 75 76
|
3eqtrrd |
|- ( ( ph /\ y e. X /\ ( F ` y ) = +oo ) -> +oo = ( G gsum ( F |` { y } ) ) ) |
78 |
|
reseq2 |
|- ( x = { y } -> ( F |` x ) = ( F |` { y } ) ) |
79 |
78
|
oveq2d |
|- ( x = { y } -> ( G gsum ( F |` x ) ) = ( G gsum ( F |` { y } ) ) ) |
80 |
79
|
rspceeqv |
|- ( ( { y } e. ( ~P X i^i Fin ) /\ +oo = ( G gsum ( F |` { y } ) ) ) -> E. x e. ( ~P X i^i Fin ) +oo = ( G gsum ( F |` x ) ) ) |
81 |
45 77 80
|
syl2anc |
|- ( ( ph /\ y e. X /\ ( F ` y ) = +oo ) -> E. x e. ( ~P X i^i Fin ) +oo = ( G gsum ( F |` x ) ) ) |
82 |
|
pnfxr |
|- +oo e. RR* |
83 |
82
|
a1i |
|- ( ( ph /\ y e. X /\ ( F ` y ) = +oo ) -> +oo e. RR* ) |
84 |
38
|
elrnmpt |
|- ( +oo e. RR* -> ( +oo e. ran ( x e. ( ~P X i^i Fin ) |-> ( G gsum ( F |` x ) ) ) <-> E. x e. ( ~P X i^i Fin ) +oo = ( G gsum ( F |` x ) ) ) ) |
85 |
83 84
|
syl |
|- ( ( ph /\ y e. X /\ ( F ` y ) = +oo ) -> ( +oo e. ran ( x e. ( ~P X i^i Fin ) |-> ( G gsum ( F |` x ) ) ) <-> E. x e. ( ~P X i^i Fin ) +oo = ( G gsum ( F |` x ) ) ) ) |
86 |
81 85
|
mpbird |
|- ( ( ph /\ y e. X /\ ( F ` y ) = +oo ) -> +oo e. ran ( x e. ( ~P X i^i Fin ) |-> ( G gsum ( F |` x ) ) ) ) |
87 |
|
supxrpnf |
|- ( ( ran ( x e. ( ~P X i^i Fin ) |-> ( G gsum ( F |` x ) ) ) C_ RR* /\ +oo e. ran ( x e. ( ~P X i^i Fin ) |-> ( G gsum ( F |` x ) ) ) ) -> sup ( ran ( x e. ( ~P X i^i Fin ) |-> ( G gsum ( F |` x ) ) ) , RR* , < ) = +oo ) |
88 |
40 86 87
|
syl2anc |
|- ( ( ph /\ y e. X /\ ( F ` y ) = +oo ) -> sup ( ran ( x e. ( ~P X i^i Fin ) |-> ( G gsum ( F |` x ) ) ) , RR* , < ) = +oo ) |
89 |
88
|
3exp |
|- ( ph -> ( y e. X -> ( ( F ` y ) = +oo -> sup ( ran ( x e. ( ~P X i^i Fin ) |-> ( G gsum ( F |` x ) ) ) , RR* , < ) = +oo ) ) ) |
90 |
89
|
adantr |
|- ( ( ph /\ +oo e. ran F ) -> ( y e. X -> ( ( F ` y ) = +oo -> sup ( ran ( x e. ( ~P X i^i Fin ) |-> ( G gsum ( F |` x ) ) ) , RR* , < ) = +oo ) ) ) |
91 |
90
|
rexlimdv |
|- ( ( ph /\ +oo e. ran F ) -> ( E. y e. X ( F ` y ) = +oo -> sup ( ran ( x e. ( ~P X i^i Fin ) |-> ( G gsum ( F |` x ) ) ) , RR* , < ) = +oo ) ) |
92 |
20 91
|
mpd |
|- ( ( ph /\ +oo e. ran F ) -> sup ( ran ( x e. ( ~P X i^i Fin ) |-> ( G gsum ( F |` x ) ) ) , RR* , < ) = +oo ) |
93 |
15 92
|
eqtr4d |
|- ( ( ph /\ +oo e. ran F ) -> ( sum^ ` F ) = sup ( ran ( x e. ( ~P X i^i Fin ) |-> ( G gsum ( F |` x ) ) ) , RR* , < ) ) |
94 |
2
|
adantr |
|- ( ( ph /\ -. +oo e. ran F ) -> X e. V ) |
95 |
3
|
adantr |
|- ( ( ph /\ -. +oo e. ran F ) -> F : X --> ( 0 [,] +oo ) ) |
96 |
|
simpr |
|- ( ( ph /\ -. +oo e. ran F ) -> -. +oo e. ran F ) |
97 |
95 96
|
fge0iccico |
|- ( ( ph /\ -. +oo e. ran F ) -> F : X --> ( 0 [,) +oo ) ) |
98 |
94 97
|
sge0reval |
|- ( ( ph /\ -. +oo e. ran F ) -> ( sum^ ` F ) = sup ( ran ( x e. ( ~P X i^i Fin ) |-> sum_ y e. x ( F ` y ) ) , RR* , < ) ) |
99 |
23 27
|
feqresmpt |
|- ( ( ph /\ x e. ( ~P X i^i Fin ) ) -> ( F |` x ) = ( y e. x |-> ( F ` y ) ) ) |
100 |
99
|
adantlr |
|- ( ( ( ph /\ -. +oo e. ran F ) /\ x e. ( ~P X i^i Fin ) ) -> ( F |` x ) = ( y e. x |-> ( F ` y ) ) ) |
101 |
100
|
oveq2d |
|- ( ( ( ph /\ -. +oo e. ran F ) /\ x e. ( ~P X i^i Fin ) ) -> ( G gsum ( F |` x ) ) = ( G gsum ( y e. x |-> ( F ` y ) ) ) ) |
102 |
1
|
fveq2i |
|- ( +g ` G ) = ( +g ` ( RR*s |`s ( 0 [,] +oo ) ) ) |
103 |
|
eqid |
|- ( RR*s |`s ( 0 [,] +oo ) ) = ( RR*s |`s ( 0 [,] +oo ) ) |
104 |
|
xrsadd |
|- +e = ( +g ` RR*s ) |
105 |
103 104
|
ressplusg |
|- ( ( 0 [,] +oo ) e. _V -> +e = ( +g ` ( RR*s |`s ( 0 [,] +oo ) ) ) ) |
106 |
68 105
|
ax-mp |
|- +e = ( +g ` ( RR*s |`s ( 0 [,] +oo ) ) ) |
107 |
106
|
eqcomi |
|- ( +g ` ( RR*s |`s ( 0 [,] +oo ) ) ) = +e |
108 |
102 107
|
eqtr2i |
|- +e = ( +g ` G ) |
109 |
1
|
oveq1i |
|- ( G |`s ( 0 [,) +oo ) ) = ( ( RR*s |`s ( 0 [,] +oo ) ) |`s ( 0 [,) +oo ) ) |
110 |
|
icossicc |
|- ( 0 [,) +oo ) C_ ( 0 [,] +oo ) |
111 |
68 110
|
pm3.2i |
|- ( ( 0 [,] +oo ) e. _V /\ ( 0 [,) +oo ) C_ ( 0 [,] +oo ) ) |
112 |
|
ressabs |
|- ( ( ( 0 [,] +oo ) e. _V /\ ( 0 [,) +oo ) C_ ( 0 [,] +oo ) ) -> ( ( RR*s |`s ( 0 [,] +oo ) ) |`s ( 0 [,) +oo ) ) = ( RR*s |`s ( 0 [,) +oo ) ) ) |
113 |
111 112
|
ax-mp |
|- ( ( RR*s |`s ( 0 [,] +oo ) ) |`s ( 0 [,) +oo ) ) = ( RR*s |`s ( 0 [,) +oo ) ) |
114 |
109 113
|
eqtr2i |
|- ( RR*s |`s ( 0 [,) +oo ) ) = ( G |`s ( 0 [,) +oo ) ) |
115 |
58
|
elexi |
|- G e. _V |
116 |
115
|
a1i |
|- ( ( ( ph /\ -. +oo e. ran F ) /\ x e. ( ~P X i^i Fin ) ) -> G e. _V ) |
117 |
|
simpr |
|- ( ( ( ph /\ -. +oo e. ran F ) /\ x e. ( ~P X i^i Fin ) ) -> x e. ( ~P X i^i Fin ) ) |
118 |
110
|
a1i |
|- ( ( ( ph /\ -. +oo e. ran F ) /\ x e. ( ~P X i^i Fin ) ) -> ( 0 [,) +oo ) C_ ( 0 [,] +oo ) ) |
119 |
|
0xr |
|- 0 e. RR* |
120 |
119
|
a1i |
|- ( ( ( ( ph /\ -. +oo e. ran F ) /\ x e. ( ~P X i^i Fin ) ) /\ y e. x ) -> 0 e. RR* ) |
121 |
82
|
a1i |
|- ( ( ( ( ph /\ -. +oo e. ran F ) /\ x e. ( ~P X i^i Fin ) ) /\ y e. x ) -> +oo e. RR* ) |
122 |
95
|
ad2antrr |
|- ( ( ( ( ph /\ -. +oo e. ran F ) /\ x e. ( ~P X i^i Fin ) ) /\ y e. x ) -> F : X --> ( 0 [,] +oo ) ) |
123 |
26
|
sselda |
|- ( ( x e. ( ~P X i^i Fin ) /\ y e. x ) -> y e. X ) |
124 |
123
|
adantll |
|- ( ( ( ( ph /\ -. +oo e. ran F ) /\ x e. ( ~P X i^i Fin ) ) /\ y e. x ) -> y e. X ) |
125 |
122 124
|
ffvelrnd |
|- ( ( ( ( ph /\ -. +oo e. ran F ) /\ x e. ( ~P X i^i Fin ) ) /\ y e. x ) -> ( F ` y ) e. ( 0 [,] +oo ) ) |
126 |
21 125
|
sselid |
|- ( ( ( ( ph /\ -. +oo e. ran F ) /\ x e. ( ~P X i^i Fin ) ) /\ y e. x ) -> ( F ` y ) e. RR* ) |
127 |
|
iccgelb |
|- ( ( 0 e. RR* /\ +oo e. RR* /\ ( F ` y ) e. ( 0 [,] +oo ) ) -> 0 <_ ( F ` y ) ) |
128 |
120 121 125 127
|
syl3anc |
|- ( ( ( ( ph /\ -. +oo e. ran F ) /\ x e. ( ~P X i^i Fin ) ) /\ y e. x ) -> 0 <_ ( F ` y ) ) |
129 |
|
id |
|- ( ( F ` y ) = +oo -> ( F ` y ) = +oo ) |
130 |
129
|
eqcomd |
|- ( ( F ` y ) = +oo -> +oo = ( F ` y ) ) |
131 |
130
|
adantl |
|- ( ( ( ( ph /\ x e. ( ~P X i^i Fin ) ) /\ y e. x ) /\ ( F ` y ) = +oo ) -> +oo = ( F ` y ) ) |
132 |
3
|
ffund |
|- ( ph -> Fun F ) |
133 |
132
|
ad2antrr |
|- ( ( ( ph /\ x e. ( ~P X i^i Fin ) ) /\ y e. x ) -> Fun F ) |
134 |
22 123
|
sylan |
|- ( ( ( ph /\ x e. ( ~P X i^i Fin ) ) /\ y e. x ) -> y e. X ) |
135 |
3
|
fdmd |
|- ( ph -> dom F = X ) |
136 |
135
|
eqcomd |
|- ( ph -> X = dom F ) |
137 |
136
|
ad2antrr |
|- ( ( ( ph /\ x e. ( ~P X i^i Fin ) ) /\ y e. x ) -> X = dom F ) |
138 |
134 137
|
eleqtrd |
|- ( ( ( ph /\ x e. ( ~P X i^i Fin ) ) /\ y e. x ) -> y e. dom F ) |
139 |
|
fvelrn |
|- ( ( Fun F /\ y e. dom F ) -> ( F ` y ) e. ran F ) |
140 |
133 138 139
|
syl2anc |
|- ( ( ( ph /\ x e. ( ~P X i^i Fin ) ) /\ y e. x ) -> ( F ` y ) e. ran F ) |
141 |
140
|
adantr |
|- ( ( ( ( ph /\ x e. ( ~P X i^i Fin ) ) /\ y e. x ) /\ ( F ` y ) = +oo ) -> ( F ` y ) e. ran F ) |
142 |
131 141
|
eqeltrd |
|- ( ( ( ( ph /\ x e. ( ~P X i^i Fin ) ) /\ y e. x ) /\ ( F ` y ) = +oo ) -> +oo e. ran F ) |
143 |
142
|
adantl3r |
|- ( ( ( ( ( ph /\ -. +oo e. ran F ) /\ x e. ( ~P X i^i Fin ) ) /\ y e. x ) /\ ( F ` y ) = +oo ) -> +oo e. ran F ) |
144 |
96
|
ad3antrrr |
|- ( ( ( ( ( ph /\ -. +oo e. ran F ) /\ x e. ( ~P X i^i Fin ) ) /\ y e. x ) /\ ( F ` y ) = +oo ) -> -. +oo e. ran F ) |
145 |
143 144
|
pm2.65da |
|- ( ( ( ( ph /\ -. +oo e. ran F ) /\ x e. ( ~P X i^i Fin ) ) /\ y e. x ) -> -. ( F ` y ) = +oo ) |
146 |
145
|
neqned |
|- ( ( ( ( ph /\ -. +oo e. ran F ) /\ x e. ( ~P X i^i Fin ) ) /\ y e. x ) -> ( F ` y ) =/= +oo ) |
147 |
|
ge0xrre |
|- ( ( ( F ` y ) e. ( 0 [,] +oo ) /\ ( F ` y ) =/= +oo ) -> ( F ` y ) e. RR ) |
148 |
125 146 147
|
syl2anc |
|- ( ( ( ( ph /\ -. +oo e. ran F ) /\ x e. ( ~P X i^i Fin ) ) /\ y e. x ) -> ( F ` y ) e. RR ) |
149 |
148
|
ltpnfd |
|- ( ( ( ( ph /\ -. +oo e. ran F ) /\ x e. ( ~P X i^i Fin ) ) /\ y e. x ) -> ( F ` y ) < +oo ) |
150 |
120 121 126 128 149
|
elicod |
|- ( ( ( ( ph /\ -. +oo e. ran F ) /\ x e. ( ~P X i^i Fin ) ) /\ y e. x ) -> ( F ` y ) e. ( 0 [,) +oo ) ) |
151 |
|
eqid |
|- ( y e. x |-> ( F ` y ) ) = ( y e. x |-> ( F ` y ) ) |
152 |
150 151
|
fmptd |
|- ( ( ( ph /\ -. +oo e. ran F ) /\ x e. ( ~P X i^i Fin ) ) -> ( y e. x |-> ( F ` y ) ) : x --> ( 0 [,) +oo ) ) |
153 |
|
0e0icopnf |
|- 0 e. ( 0 [,) +oo ) |
154 |
153
|
a1i |
|- ( ( ( ph /\ -. +oo e. ran F ) /\ x e. ( ~P X i^i Fin ) ) -> 0 e. ( 0 [,) +oo ) ) |
155 |
|
eliccxr |
|- ( y e. ( 0 [,] +oo ) -> y e. RR* ) |
156 |
|
xaddid2 |
|- ( y e. RR* -> ( 0 +e y ) = y ) |
157 |
|
xaddid1 |
|- ( y e. RR* -> ( y +e 0 ) = y ) |
158 |
156 157
|
jca |
|- ( y e. RR* -> ( ( 0 +e y ) = y /\ ( y +e 0 ) = y ) ) |
159 |
155 158
|
syl |
|- ( y e. ( 0 [,] +oo ) -> ( ( 0 +e y ) = y /\ ( y +e 0 ) = y ) ) |
160 |
159
|
adantl |
|- ( ( ( ( ph /\ -. +oo e. ran F ) /\ x e. ( ~P X i^i Fin ) ) /\ y e. ( 0 [,] +oo ) ) -> ( ( 0 +e y ) = y /\ ( y +e 0 ) = y ) ) |
161 |
72 108 114 116 117 118 152 154 160
|
gsumress |
|- ( ( ( ph /\ -. +oo e. ran F ) /\ x e. ( ~P X i^i Fin ) ) -> ( G gsum ( y e. x |-> ( F ` y ) ) ) = ( ( RR*s |`s ( 0 [,) +oo ) ) gsum ( y e. x |-> ( F ` y ) ) ) ) |
162 |
|
rege0subm |
|- ( 0 [,) +oo ) e. ( SubMnd ` CCfld ) |
163 |
162
|
a1i |
|- ( ( ( ph /\ -. +oo e. ran F ) /\ x e. ( ~P X i^i Fin ) ) -> ( 0 [,) +oo ) e. ( SubMnd ` CCfld ) ) |
164 |
|
eqid |
|- ( CCfld |`s ( 0 [,) +oo ) ) = ( CCfld |`s ( 0 [,) +oo ) ) |
165 |
117 163 152 164
|
gsumsubm |
|- ( ( ( ph /\ -. +oo e. ran F ) /\ x e. ( ~P X i^i Fin ) ) -> ( CCfld gsum ( y e. x |-> ( F ` y ) ) ) = ( ( CCfld |`s ( 0 [,) +oo ) ) gsum ( y e. x |-> ( F ` y ) ) ) ) |
166 |
|
eqidd |
|- ( ( ( ph /\ -. +oo e. ran F ) /\ x e. ( ~P X i^i Fin ) ) -> ( ( CCfld |`s ( 0 [,) +oo ) ) gsum ( y e. x |-> ( F ` y ) ) ) = ( ( CCfld |`s ( 0 [,) +oo ) ) gsum ( y e. x |-> ( F ` y ) ) ) ) |
167 |
|
vex |
|- x e. _V |
168 |
167
|
mptex |
|- ( y e. x |-> ( F ` y ) ) e. _V |
169 |
168
|
a1i |
|- ( ( ( ph /\ -. +oo e. ran F ) /\ x e. ( ~P X i^i Fin ) ) -> ( y e. x |-> ( F ` y ) ) e. _V ) |
170 |
|
ovexd |
|- ( ( ( ph /\ -. +oo e. ran F ) /\ x e. ( ~P X i^i Fin ) ) -> ( CCfld |`s ( 0 [,) +oo ) ) e. _V ) |
171 |
|
ovexd |
|- ( ( ( ph /\ -. +oo e. ran F ) /\ x e. ( ~P X i^i Fin ) ) -> ( RR*s |`s ( 0 [,) +oo ) ) e. _V ) |
172 |
|
rge0ssre |
|- ( 0 [,) +oo ) C_ RR |
173 |
|
ax-resscn |
|- RR C_ CC |
174 |
172 173
|
sstri |
|- ( 0 [,) +oo ) C_ CC |
175 |
|
cnfldbas |
|- CC = ( Base ` CCfld ) |
176 |
164 175
|
ressbas2 |
|- ( ( 0 [,) +oo ) C_ CC -> ( 0 [,) +oo ) = ( Base ` ( CCfld |`s ( 0 [,) +oo ) ) ) ) |
177 |
174 176
|
ax-mp |
|- ( 0 [,) +oo ) = ( Base ` ( CCfld |`s ( 0 [,) +oo ) ) ) |
178 |
177
|
eqcomi |
|- ( Base ` ( CCfld |`s ( 0 [,) +oo ) ) ) = ( 0 [,) +oo ) |
179 |
110 21
|
sstri |
|- ( 0 [,) +oo ) C_ RR* |
180 |
|
eqid |
|- ( RR*s |`s ( 0 [,) +oo ) ) = ( RR*s |`s ( 0 [,) +oo ) ) |
181 |
180 69
|
ressbas2 |
|- ( ( 0 [,) +oo ) C_ RR* -> ( 0 [,) +oo ) = ( Base ` ( RR*s |`s ( 0 [,) +oo ) ) ) ) |
182 |
179 181
|
ax-mp |
|- ( 0 [,) +oo ) = ( Base ` ( RR*s |`s ( 0 [,) +oo ) ) ) |
183 |
178 182
|
eqtri |
|- ( Base ` ( CCfld |`s ( 0 [,) +oo ) ) ) = ( Base ` ( RR*s |`s ( 0 [,) +oo ) ) ) |
184 |
183
|
a1i |
|- ( ( ( ph /\ -. +oo e. ran F ) /\ x e. ( ~P X i^i Fin ) ) -> ( Base ` ( CCfld |`s ( 0 [,) +oo ) ) ) = ( Base ` ( RR*s |`s ( 0 [,) +oo ) ) ) ) |
185 |
|
rge0srg |
|- ( CCfld |`s ( 0 [,) +oo ) ) e. SRing |
186 |
185
|
a1i |
|- ( ( s e. ( Base ` ( CCfld |`s ( 0 [,) +oo ) ) ) /\ t e. ( Base ` ( CCfld |`s ( 0 [,) +oo ) ) ) ) -> ( CCfld |`s ( 0 [,) +oo ) ) e. SRing ) |
187 |
|
simpl |
|- ( ( s e. ( Base ` ( CCfld |`s ( 0 [,) +oo ) ) ) /\ t e. ( Base ` ( CCfld |`s ( 0 [,) +oo ) ) ) ) -> s e. ( Base ` ( CCfld |`s ( 0 [,) +oo ) ) ) ) |
188 |
|
simpr |
|- ( ( s e. ( Base ` ( CCfld |`s ( 0 [,) +oo ) ) ) /\ t e. ( Base ` ( CCfld |`s ( 0 [,) +oo ) ) ) ) -> t e. ( Base ` ( CCfld |`s ( 0 [,) +oo ) ) ) ) |
189 |
|
eqid |
|- ( Base ` ( CCfld |`s ( 0 [,) +oo ) ) ) = ( Base ` ( CCfld |`s ( 0 [,) +oo ) ) ) |
190 |
|
eqid |
|- ( +g ` ( CCfld |`s ( 0 [,) +oo ) ) ) = ( +g ` ( CCfld |`s ( 0 [,) +oo ) ) ) |
191 |
189 190
|
srgacl |
|- ( ( ( CCfld |`s ( 0 [,) +oo ) ) e. SRing /\ s e. ( Base ` ( CCfld |`s ( 0 [,) +oo ) ) ) /\ t e. ( Base ` ( CCfld |`s ( 0 [,) +oo ) ) ) ) -> ( s ( +g ` ( CCfld |`s ( 0 [,) +oo ) ) ) t ) e. ( Base ` ( CCfld |`s ( 0 [,) +oo ) ) ) ) |
192 |
186 187 188 191
|
syl3anc |
|- ( ( s e. ( Base ` ( CCfld |`s ( 0 [,) +oo ) ) ) /\ t e. ( Base ` ( CCfld |`s ( 0 [,) +oo ) ) ) ) -> ( s ( +g ` ( CCfld |`s ( 0 [,) +oo ) ) ) t ) e. ( Base ` ( CCfld |`s ( 0 [,) +oo ) ) ) ) |
193 |
192
|
adantl |
|- ( ( ( ( ph /\ -. +oo e. ran F ) /\ x e. ( ~P X i^i Fin ) ) /\ ( s e. ( Base ` ( CCfld |`s ( 0 [,) +oo ) ) ) /\ t e. ( Base ` ( CCfld |`s ( 0 [,) +oo ) ) ) ) ) -> ( s ( +g ` ( CCfld |`s ( 0 [,) +oo ) ) ) t ) e. ( Base ` ( CCfld |`s ( 0 [,) +oo ) ) ) ) |
194 |
172
|
a1i |
|- ( s e. ( Base ` ( CCfld |`s ( 0 [,) +oo ) ) ) -> ( 0 [,) +oo ) C_ RR ) |
195 |
|
id |
|- ( s e. ( Base ` ( CCfld |`s ( 0 [,) +oo ) ) ) -> s e. ( Base ` ( CCfld |`s ( 0 [,) +oo ) ) ) ) |
196 |
195 178
|
eleqtrdi |
|- ( s e. ( Base ` ( CCfld |`s ( 0 [,) +oo ) ) ) -> s e. ( 0 [,) +oo ) ) |
197 |
194 196
|
sseldd |
|- ( s e. ( Base ` ( CCfld |`s ( 0 [,) +oo ) ) ) -> s e. RR ) |
198 |
197
|
adantr |
|- ( ( s e. ( Base ` ( CCfld |`s ( 0 [,) +oo ) ) ) /\ t e. ( Base ` ( CCfld |`s ( 0 [,) +oo ) ) ) ) -> s e. RR ) |
199 |
172
|
a1i |
|- ( t e. ( Base ` ( CCfld |`s ( 0 [,) +oo ) ) ) -> ( 0 [,) +oo ) C_ RR ) |
200 |
|
id |
|- ( t e. ( Base ` ( CCfld |`s ( 0 [,) +oo ) ) ) -> t e. ( Base ` ( CCfld |`s ( 0 [,) +oo ) ) ) ) |
201 |
200 178
|
eleqtrdi |
|- ( t e. ( Base ` ( CCfld |`s ( 0 [,) +oo ) ) ) -> t e. ( 0 [,) +oo ) ) |
202 |
199 201
|
sseldd |
|- ( t e. ( Base ` ( CCfld |`s ( 0 [,) +oo ) ) ) -> t e. RR ) |
203 |
202
|
adantl |
|- ( ( s e. ( Base ` ( CCfld |`s ( 0 [,) +oo ) ) ) /\ t e. ( Base ` ( CCfld |`s ( 0 [,) +oo ) ) ) ) -> t e. RR ) |
204 |
|
rexadd |
|- ( ( s e. RR /\ t e. RR ) -> ( s +e t ) = ( s + t ) ) |
205 |
204
|
eqcomd |
|- ( ( s e. RR /\ t e. RR ) -> ( s + t ) = ( s +e t ) ) |
206 |
162
|
elexi |
|- ( 0 [,) +oo ) e. _V |
207 |
|
cnfldadd |
|- + = ( +g ` CCfld ) |
208 |
164 207
|
ressplusg |
|- ( ( 0 [,) +oo ) e. _V -> + = ( +g ` ( CCfld |`s ( 0 [,) +oo ) ) ) ) |
209 |
206 208
|
ax-mp |
|- + = ( +g ` ( CCfld |`s ( 0 [,) +oo ) ) ) |
210 |
209 207
|
eqtr3i |
|- ( +g ` ( CCfld |`s ( 0 [,) +oo ) ) ) = ( +g ` CCfld ) |
211 |
210 207
|
eqtr4i |
|- ( +g ` ( CCfld |`s ( 0 [,) +oo ) ) ) = + |
212 |
211
|
oveqi |
|- ( s ( +g ` ( CCfld |`s ( 0 [,) +oo ) ) ) t ) = ( s + t ) |
213 |
212
|
a1i |
|- ( ( s e. RR /\ t e. RR ) -> ( s ( +g ` ( CCfld |`s ( 0 [,) +oo ) ) ) t ) = ( s + t ) ) |
214 |
180 104
|
ressplusg |
|- ( ( 0 [,) +oo ) e. _V -> +e = ( +g ` ( RR*s |`s ( 0 [,) +oo ) ) ) ) |
215 |
206 214
|
ax-mp |
|- +e = ( +g ` ( RR*s |`s ( 0 [,) +oo ) ) ) |
216 |
215
|
eqcomi |
|- ( +g ` ( RR*s |`s ( 0 [,) +oo ) ) ) = +e |
217 |
216
|
oveqi |
|- ( s ( +g ` ( RR*s |`s ( 0 [,) +oo ) ) ) t ) = ( s +e t ) |
218 |
217
|
a1i |
|- ( ( s e. RR /\ t e. RR ) -> ( s ( +g ` ( RR*s |`s ( 0 [,) +oo ) ) ) t ) = ( s +e t ) ) |
219 |
205 213 218
|
3eqtr4d |
|- ( ( s e. RR /\ t e. RR ) -> ( s ( +g ` ( CCfld |`s ( 0 [,) +oo ) ) ) t ) = ( s ( +g ` ( RR*s |`s ( 0 [,) +oo ) ) ) t ) ) |
220 |
198 203 219
|
syl2anc |
|- ( ( s e. ( Base ` ( CCfld |`s ( 0 [,) +oo ) ) ) /\ t e. ( Base ` ( CCfld |`s ( 0 [,) +oo ) ) ) ) -> ( s ( +g ` ( CCfld |`s ( 0 [,) +oo ) ) ) t ) = ( s ( +g ` ( RR*s |`s ( 0 [,) +oo ) ) ) t ) ) |
221 |
220
|
adantl |
|- ( ( ( ( ph /\ -. +oo e. ran F ) /\ x e. ( ~P X i^i Fin ) ) /\ ( s e. ( Base ` ( CCfld |`s ( 0 [,) +oo ) ) ) /\ t e. ( Base ` ( CCfld |`s ( 0 [,) +oo ) ) ) ) ) -> ( s ( +g ` ( CCfld |`s ( 0 [,) +oo ) ) ) t ) = ( s ( +g ` ( RR*s |`s ( 0 [,) +oo ) ) ) t ) ) |
222 |
|
funmpt |
|- Fun ( y e. x |-> ( F ` y ) ) |
223 |
222
|
a1i |
|- ( ( ( ph /\ -. +oo e. ran F ) /\ x e. ( ~P X i^i Fin ) ) -> Fun ( y e. x |-> ( F ` y ) ) ) |
224 |
150 177
|
eleqtrdi |
|- ( ( ( ( ph /\ -. +oo e. ran F ) /\ x e. ( ~P X i^i Fin ) ) /\ y e. x ) -> ( F ` y ) e. ( Base ` ( CCfld |`s ( 0 [,) +oo ) ) ) ) |
225 |
224
|
ralrimiva |
|- ( ( ( ph /\ -. +oo e. ran F ) /\ x e. ( ~P X i^i Fin ) ) -> A. y e. x ( F ` y ) e. ( Base ` ( CCfld |`s ( 0 [,) +oo ) ) ) ) |
226 |
151
|
rnmptss |
|- ( A. y e. x ( F ` y ) e. ( Base ` ( CCfld |`s ( 0 [,) +oo ) ) ) -> ran ( y e. x |-> ( F ` y ) ) C_ ( Base ` ( CCfld |`s ( 0 [,) +oo ) ) ) ) |
227 |
225 226
|
syl |
|- ( ( ( ph /\ -. +oo e. ran F ) /\ x e. ( ~P X i^i Fin ) ) -> ran ( y e. x |-> ( F ` y ) ) C_ ( Base ` ( CCfld |`s ( 0 [,) +oo ) ) ) ) |
228 |
169 170 171 184 193 221 223 227
|
gsumpropd2 |
|- ( ( ( ph /\ -. +oo e. ran F ) /\ x e. ( ~P X i^i Fin ) ) -> ( ( CCfld |`s ( 0 [,) +oo ) ) gsum ( y e. x |-> ( F ` y ) ) ) = ( ( RR*s |`s ( 0 [,) +oo ) ) gsum ( y e. x |-> ( F ` y ) ) ) ) |
229 |
165 166 228
|
3eqtrd |
|- ( ( ( ph /\ -. +oo e. ran F ) /\ x e. ( ~P X i^i Fin ) ) -> ( CCfld gsum ( y e. x |-> ( F ` y ) ) ) = ( ( RR*s |`s ( 0 [,) +oo ) ) gsum ( y e. x |-> ( F ` y ) ) ) ) |
230 |
30
|
adantl |
|- ( ( ( ph /\ -. +oo e. ran F ) /\ x e. ( ~P X i^i Fin ) ) -> x e. Fin ) |
231 |
148
|
recnd |
|- ( ( ( ( ph /\ -. +oo e. ran F ) /\ x e. ( ~P X i^i Fin ) ) /\ y e. x ) -> ( F ` y ) e. CC ) |
232 |
230 231
|
gsumfsum |
|- ( ( ( ph /\ -. +oo e. ran F ) /\ x e. ( ~P X i^i Fin ) ) -> ( CCfld gsum ( y e. x |-> ( F ` y ) ) ) = sum_ y e. x ( F ` y ) ) |
233 |
229 232
|
eqtr3d |
|- ( ( ( ph /\ -. +oo e. ran F ) /\ x e. ( ~P X i^i Fin ) ) -> ( ( RR*s |`s ( 0 [,) +oo ) ) gsum ( y e. x |-> ( F ` y ) ) ) = sum_ y e. x ( F ` y ) ) |
234 |
101 161 233
|
3eqtrrd |
|- ( ( ( ph /\ -. +oo e. ran F ) /\ x e. ( ~P X i^i Fin ) ) -> sum_ y e. x ( F ` y ) = ( G gsum ( F |` x ) ) ) |
235 |
234
|
mpteq2dva |
|- ( ( ph /\ -. +oo e. ran F ) -> ( x e. ( ~P X i^i Fin ) |-> sum_ y e. x ( F ` y ) ) = ( x e. ( ~P X i^i Fin ) |-> ( G gsum ( F |` x ) ) ) ) |
236 |
235
|
rneqd |
|- ( ( ph /\ -. +oo e. ran F ) -> ran ( x e. ( ~P X i^i Fin ) |-> sum_ y e. x ( F ` y ) ) = ran ( x e. ( ~P X i^i Fin ) |-> ( G gsum ( F |` x ) ) ) ) |
237 |
236
|
supeq1d |
|- ( ( ph /\ -. +oo e. ran F ) -> sup ( ran ( x e. ( ~P X i^i Fin ) |-> sum_ y e. x ( F ` y ) ) , RR* , < ) = sup ( ran ( x e. ( ~P X i^i Fin ) |-> ( G gsum ( F |` x ) ) ) , RR* , < ) ) |
238 |
98 237
|
eqtrd |
|- ( ( ph /\ -. +oo e. ran F ) -> ( sum^ ` F ) = sup ( ran ( x e. ( ~P X i^i Fin ) |-> ( G gsum ( F |` x ) ) ) , RR* , < ) ) |
239 |
93 238
|
pm2.61dan |
|- ( ph -> ( sum^ ` F ) = sup ( ran ( x e. ( ~P X i^i Fin ) |-> ( G gsum ( F |` x ) ) ) , RR* , < ) ) |
240 |
1 2 3 4
|
xrge0tsms |
|- ( ph -> ( G tsums F ) = { sup ( ran ( x e. ( ~P X i^i Fin ) |-> ( G gsum ( F |` x ) ) ) , RR* , < ) } ) |
241 |
239 240
|
eleq12d |
|- ( ph -> ( ( sum^ ` F ) e. ( G tsums F ) <-> sup ( ran ( x e. ( ~P X i^i Fin ) |-> ( G gsum ( F |` x ) ) ) , RR* , < ) e. { sup ( ran ( x e. ( ~P X i^i Fin ) |-> ( G gsum ( F |` x ) ) ) , RR* , < ) } ) ) |
242 |
11 241
|
mpbird |
|- ( ph -> ( sum^ ` F ) e. ( G tsums F ) ) |