| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gsumpropd2.f |
|- ( ph -> F e. V ) |
| 2 |
|
gsumpropd2.g |
|- ( ph -> G e. W ) |
| 3 |
|
gsumpropd2.h |
|- ( ph -> H e. X ) |
| 4 |
|
gsumpropd2.b |
|- ( ph -> ( Base ` G ) = ( Base ` H ) ) |
| 5 |
|
gsumpropd2.c |
|- ( ( ph /\ ( s e. ( Base ` G ) /\ t e. ( Base ` G ) ) ) -> ( s ( +g ` G ) t ) e. ( Base ` G ) ) |
| 6 |
|
gsumpropd2.e |
|- ( ( ph /\ ( s e. ( Base ` G ) /\ t e. ( Base ` G ) ) ) -> ( s ( +g ` G ) t ) = ( s ( +g ` H ) t ) ) |
| 7 |
|
gsumpropd2.n |
|- ( ph -> Fun F ) |
| 8 |
|
gsumpropd2.r |
|- ( ph -> ran F C_ ( Base ` G ) ) |
| 9 |
|
eqid |
|- ( `' F " ( _V \ { s e. ( Base ` G ) | A. t e. ( Base ` G ) ( ( s ( +g ` G ) t ) = t /\ ( t ( +g ` G ) s ) = t ) } ) ) = ( `' F " ( _V \ { s e. ( Base ` G ) | A. t e. ( Base ` G ) ( ( s ( +g ` G ) t ) = t /\ ( t ( +g ` G ) s ) = t ) } ) ) |
| 10 |
|
eqid |
|- ( `' F " ( _V \ { s e. ( Base ` H ) | A. t e. ( Base ` H ) ( ( s ( +g ` H ) t ) = t /\ ( t ( +g ` H ) s ) = t ) } ) ) = ( `' F " ( _V \ { s e. ( Base ` H ) | A. t e. ( Base ` H ) ( ( s ( +g ` H ) t ) = t /\ ( t ( +g ` H ) s ) = t ) } ) ) |
| 11 |
1 2 3 4 5 6 7 8 9 10
|
gsumpropd2lem |
|- ( ph -> ( G gsum F ) = ( H gsum F ) ) |