Step |
Hyp |
Ref |
Expression |
1 |
|
gsumpropd2.f |
⊢ ( 𝜑 → 𝐹 ∈ 𝑉 ) |
2 |
|
gsumpropd2.g |
⊢ ( 𝜑 → 𝐺 ∈ 𝑊 ) |
3 |
|
gsumpropd2.h |
⊢ ( 𝜑 → 𝐻 ∈ 𝑋 ) |
4 |
|
gsumpropd2.b |
⊢ ( 𝜑 → ( Base ‘ 𝐺 ) = ( Base ‘ 𝐻 ) ) |
5 |
|
gsumpropd2.c |
⊢ ( ( 𝜑 ∧ ( 𝑠 ∈ ( Base ‘ 𝐺 ) ∧ 𝑡 ∈ ( Base ‘ 𝐺 ) ) ) → ( 𝑠 ( +g ‘ 𝐺 ) 𝑡 ) ∈ ( Base ‘ 𝐺 ) ) |
6 |
|
gsumpropd2.e |
⊢ ( ( 𝜑 ∧ ( 𝑠 ∈ ( Base ‘ 𝐺 ) ∧ 𝑡 ∈ ( Base ‘ 𝐺 ) ) ) → ( 𝑠 ( +g ‘ 𝐺 ) 𝑡 ) = ( 𝑠 ( +g ‘ 𝐻 ) 𝑡 ) ) |
7 |
|
gsumpropd2.n |
⊢ ( 𝜑 → Fun 𝐹 ) |
8 |
|
gsumpropd2.r |
⊢ ( 𝜑 → ran 𝐹 ⊆ ( Base ‘ 𝐺 ) ) |
9 |
|
eqid |
⊢ ( ◡ 𝐹 “ ( V ∖ { 𝑠 ∈ ( Base ‘ 𝐺 ) ∣ ∀ 𝑡 ∈ ( Base ‘ 𝐺 ) ( ( 𝑠 ( +g ‘ 𝐺 ) 𝑡 ) = 𝑡 ∧ ( 𝑡 ( +g ‘ 𝐺 ) 𝑠 ) = 𝑡 ) } ) ) = ( ◡ 𝐹 “ ( V ∖ { 𝑠 ∈ ( Base ‘ 𝐺 ) ∣ ∀ 𝑡 ∈ ( Base ‘ 𝐺 ) ( ( 𝑠 ( +g ‘ 𝐺 ) 𝑡 ) = 𝑡 ∧ ( 𝑡 ( +g ‘ 𝐺 ) 𝑠 ) = 𝑡 ) } ) ) |
10 |
|
eqid |
⊢ ( ◡ 𝐹 “ ( V ∖ { 𝑠 ∈ ( Base ‘ 𝐻 ) ∣ ∀ 𝑡 ∈ ( Base ‘ 𝐻 ) ( ( 𝑠 ( +g ‘ 𝐻 ) 𝑡 ) = 𝑡 ∧ ( 𝑡 ( +g ‘ 𝐻 ) 𝑠 ) = 𝑡 ) } ) ) = ( ◡ 𝐹 “ ( V ∖ { 𝑠 ∈ ( Base ‘ 𝐻 ) ∣ ∀ 𝑡 ∈ ( Base ‘ 𝐻 ) ( ( 𝑠 ( +g ‘ 𝐻 ) 𝑡 ) = 𝑡 ∧ ( 𝑡 ( +g ‘ 𝐻 ) 𝑠 ) = 𝑡 ) } ) ) |
11 |
1 2 3 4 5 6 7 8 9 10
|
gsumpropd2lem |
⊢ ( 𝜑 → ( 𝐺 Σg 𝐹 ) = ( 𝐻 Σg 𝐹 ) ) |