| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gsumpropd2.f |
⊢ ( 𝜑 → 𝐹 ∈ 𝑉 ) |
| 2 |
|
gsumpropd2.g |
⊢ ( 𝜑 → 𝐺 ∈ 𝑊 ) |
| 3 |
|
gsumpropd2.h |
⊢ ( 𝜑 → 𝐻 ∈ 𝑋 ) |
| 4 |
|
gsumpropd2.b |
⊢ ( 𝜑 → ( Base ‘ 𝐺 ) = ( Base ‘ 𝐻 ) ) |
| 5 |
|
gsumpropd2.c |
⊢ ( ( 𝜑 ∧ ( 𝑠 ∈ ( Base ‘ 𝐺 ) ∧ 𝑡 ∈ ( Base ‘ 𝐺 ) ) ) → ( 𝑠 ( +g ‘ 𝐺 ) 𝑡 ) ∈ ( Base ‘ 𝐺 ) ) |
| 6 |
|
gsumpropd2.e |
⊢ ( ( 𝜑 ∧ ( 𝑠 ∈ ( Base ‘ 𝐺 ) ∧ 𝑡 ∈ ( Base ‘ 𝐺 ) ) ) → ( 𝑠 ( +g ‘ 𝐺 ) 𝑡 ) = ( 𝑠 ( +g ‘ 𝐻 ) 𝑡 ) ) |
| 7 |
|
gsumpropd2.n |
⊢ ( 𝜑 → Fun 𝐹 ) |
| 8 |
|
gsumpropd2.r |
⊢ ( 𝜑 → ran 𝐹 ⊆ ( Base ‘ 𝐺 ) ) |
| 9 |
|
gsumprop2dlem.1 |
⊢ 𝐴 = ( ◡ 𝐹 “ ( V ∖ { 𝑠 ∈ ( Base ‘ 𝐺 ) ∣ ∀ 𝑡 ∈ ( Base ‘ 𝐺 ) ( ( 𝑠 ( +g ‘ 𝐺 ) 𝑡 ) = 𝑡 ∧ ( 𝑡 ( +g ‘ 𝐺 ) 𝑠 ) = 𝑡 ) } ) ) |
| 10 |
|
gsumprop2dlem.2 |
⊢ 𝐵 = ( ◡ 𝐹 “ ( V ∖ { 𝑠 ∈ ( Base ‘ 𝐻 ) ∣ ∀ 𝑡 ∈ ( Base ‘ 𝐻 ) ( ( 𝑠 ( +g ‘ 𝐻 ) 𝑡 ) = 𝑡 ∧ ( 𝑡 ( +g ‘ 𝐻 ) 𝑠 ) = 𝑡 ) } ) ) |
| 11 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( Base ‘ 𝐺 ) ) → ( Base ‘ 𝐺 ) = ( Base ‘ 𝐻 ) ) |
| 12 |
6
|
eqeq1d |
⊢ ( ( 𝜑 ∧ ( 𝑠 ∈ ( Base ‘ 𝐺 ) ∧ 𝑡 ∈ ( Base ‘ 𝐺 ) ) ) → ( ( 𝑠 ( +g ‘ 𝐺 ) 𝑡 ) = 𝑡 ↔ ( 𝑠 ( +g ‘ 𝐻 ) 𝑡 ) = 𝑡 ) ) |
| 13 |
6
|
oveqrspc2v |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝐺 ) ∧ 𝑏 ∈ ( Base ‘ 𝐺 ) ) ) → ( 𝑎 ( +g ‘ 𝐺 ) 𝑏 ) = ( 𝑎 ( +g ‘ 𝐻 ) 𝑏 ) ) |
| 14 |
13
|
oveqrspc2v |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ ( Base ‘ 𝐺 ) ∧ 𝑠 ∈ ( Base ‘ 𝐺 ) ) ) → ( 𝑡 ( +g ‘ 𝐺 ) 𝑠 ) = ( 𝑡 ( +g ‘ 𝐻 ) 𝑠 ) ) |
| 15 |
14
|
ancom2s |
⊢ ( ( 𝜑 ∧ ( 𝑠 ∈ ( Base ‘ 𝐺 ) ∧ 𝑡 ∈ ( Base ‘ 𝐺 ) ) ) → ( 𝑡 ( +g ‘ 𝐺 ) 𝑠 ) = ( 𝑡 ( +g ‘ 𝐻 ) 𝑠 ) ) |
| 16 |
15
|
eqeq1d |
⊢ ( ( 𝜑 ∧ ( 𝑠 ∈ ( Base ‘ 𝐺 ) ∧ 𝑡 ∈ ( Base ‘ 𝐺 ) ) ) → ( ( 𝑡 ( +g ‘ 𝐺 ) 𝑠 ) = 𝑡 ↔ ( 𝑡 ( +g ‘ 𝐻 ) 𝑠 ) = 𝑡 ) ) |
| 17 |
12 16
|
anbi12d |
⊢ ( ( 𝜑 ∧ ( 𝑠 ∈ ( Base ‘ 𝐺 ) ∧ 𝑡 ∈ ( Base ‘ 𝐺 ) ) ) → ( ( ( 𝑠 ( +g ‘ 𝐺 ) 𝑡 ) = 𝑡 ∧ ( 𝑡 ( +g ‘ 𝐺 ) 𝑠 ) = 𝑡 ) ↔ ( ( 𝑠 ( +g ‘ 𝐻 ) 𝑡 ) = 𝑡 ∧ ( 𝑡 ( +g ‘ 𝐻 ) 𝑠 ) = 𝑡 ) ) ) |
| 18 |
17
|
anassrs |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ( Base ‘ 𝐺 ) ) ∧ 𝑡 ∈ ( Base ‘ 𝐺 ) ) → ( ( ( 𝑠 ( +g ‘ 𝐺 ) 𝑡 ) = 𝑡 ∧ ( 𝑡 ( +g ‘ 𝐺 ) 𝑠 ) = 𝑡 ) ↔ ( ( 𝑠 ( +g ‘ 𝐻 ) 𝑡 ) = 𝑡 ∧ ( 𝑡 ( +g ‘ 𝐻 ) 𝑠 ) = 𝑡 ) ) ) |
| 19 |
11 18
|
raleqbidva |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( Base ‘ 𝐺 ) ) → ( ∀ 𝑡 ∈ ( Base ‘ 𝐺 ) ( ( 𝑠 ( +g ‘ 𝐺 ) 𝑡 ) = 𝑡 ∧ ( 𝑡 ( +g ‘ 𝐺 ) 𝑠 ) = 𝑡 ) ↔ ∀ 𝑡 ∈ ( Base ‘ 𝐻 ) ( ( 𝑠 ( +g ‘ 𝐻 ) 𝑡 ) = 𝑡 ∧ ( 𝑡 ( +g ‘ 𝐻 ) 𝑠 ) = 𝑡 ) ) ) |
| 20 |
4 19
|
rabeqbidva |
⊢ ( 𝜑 → { 𝑠 ∈ ( Base ‘ 𝐺 ) ∣ ∀ 𝑡 ∈ ( Base ‘ 𝐺 ) ( ( 𝑠 ( +g ‘ 𝐺 ) 𝑡 ) = 𝑡 ∧ ( 𝑡 ( +g ‘ 𝐺 ) 𝑠 ) = 𝑡 ) } = { 𝑠 ∈ ( Base ‘ 𝐻 ) ∣ ∀ 𝑡 ∈ ( Base ‘ 𝐻 ) ( ( 𝑠 ( +g ‘ 𝐻 ) 𝑡 ) = 𝑡 ∧ ( 𝑡 ( +g ‘ 𝐻 ) 𝑠 ) = 𝑡 ) } ) |
| 21 |
20
|
sseq2d |
⊢ ( 𝜑 → ( ran 𝐹 ⊆ { 𝑠 ∈ ( Base ‘ 𝐺 ) ∣ ∀ 𝑡 ∈ ( Base ‘ 𝐺 ) ( ( 𝑠 ( +g ‘ 𝐺 ) 𝑡 ) = 𝑡 ∧ ( 𝑡 ( +g ‘ 𝐺 ) 𝑠 ) = 𝑡 ) } ↔ ran 𝐹 ⊆ { 𝑠 ∈ ( Base ‘ 𝐻 ) ∣ ∀ 𝑡 ∈ ( Base ‘ 𝐻 ) ( ( 𝑠 ( +g ‘ 𝐻 ) 𝑡 ) = 𝑡 ∧ ( 𝑡 ( +g ‘ 𝐻 ) 𝑠 ) = 𝑡 ) } ) ) |
| 22 |
|
eqidd |
⊢ ( 𝜑 → ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) ) |
| 23 |
22 4 6
|
grpidpropd |
⊢ ( 𝜑 → ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐻 ) ) |
| 24 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ∧ dom 𝐹 = ( 𝑚 ... 𝑛 ) ) ) → 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ) |
| 25 |
8
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ∧ dom 𝐹 = ( 𝑚 ... 𝑛 ) ) ) ∧ 𝑠 ∈ ( 𝑚 ... 𝑛 ) ) → ran 𝐹 ⊆ ( Base ‘ 𝐺 ) ) |
| 26 |
7
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ∧ dom 𝐹 = ( 𝑚 ... 𝑛 ) ) ) ∧ 𝑠 ∈ ( 𝑚 ... 𝑛 ) ) → Fun 𝐹 ) |
| 27 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ∧ dom 𝐹 = ( 𝑚 ... 𝑛 ) ) ) ∧ 𝑠 ∈ ( 𝑚 ... 𝑛 ) ) → 𝑠 ∈ ( 𝑚 ... 𝑛 ) ) |
| 28 |
|
simplrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ∧ dom 𝐹 = ( 𝑚 ... 𝑛 ) ) ) ∧ 𝑠 ∈ ( 𝑚 ... 𝑛 ) ) → dom 𝐹 = ( 𝑚 ... 𝑛 ) ) |
| 29 |
27 28
|
eleqtrrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ∧ dom 𝐹 = ( 𝑚 ... 𝑛 ) ) ) ∧ 𝑠 ∈ ( 𝑚 ... 𝑛 ) ) → 𝑠 ∈ dom 𝐹 ) |
| 30 |
|
fvelrn |
⊢ ( ( Fun 𝐹 ∧ 𝑠 ∈ dom 𝐹 ) → ( 𝐹 ‘ 𝑠 ) ∈ ran 𝐹 ) |
| 31 |
26 29 30
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ∧ dom 𝐹 = ( 𝑚 ... 𝑛 ) ) ) ∧ 𝑠 ∈ ( 𝑚 ... 𝑛 ) ) → ( 𝐹 ‘ 𝑠 ) ∈ ran 𝐹 ) |
| 32 |
25 31
|
sseldd |
⊢ ( ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ∧ dom 𝐹 = ( 𝑚 ... 𝑛 ) ) ) ∧ 𝑠 ∈ ( 𝑚 ... 𝑛 ) ) → ( 𝐹 ‘ 𝑠 ) ∈ ( Base ‘ 𝐺 ) ) |
| 33 |
5
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ∧ dom 𝐹 = ( 𝑚 ... 𝑛 ) ) ) ∧ ( 𝑠 ∈ ( Base ‘ 𝐺 ) ∧ 𝑡 ∈ ( Base ‘ 𝐺 ) ) ) → ( 𝑠 ( +g ‘ 𝐺 ) 𝑡 ) ∈ ( Base ‘ 𝐺 ) ) |
| 34 |
6
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ∧ dom 𝐹 = ( 𝑚 ... 𝑛 ) ) ) ∧ ( 𝑠 ∈ ( Base ‘ 𝐺 ) ∧ 𝑡 ∈ ( Base ‘ 𝐺 ) ) ) → ( 𝑠 ( +g ‘ 𝐺 ) 𝑡 ) = ( 𝑠 ( +g ‘ 𝐻 ) 𝑡 ) ) |
| 35 |
24 32 33 34
|
seqfeq4 |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ∧ dom 𝐹 = ( 𝑚 ... 𝑛 ) ) ) → ( seq 𝑚 ( ( +g ‘ 𝐺 ) , 𝐹 ) ‘ 𝑛 ) = ( seq 𝑚 ( ( +g ‘ 𝐻 ) , 𝐹 ) ‘ 𝑛 ) ) |
| 36 |
35
|
eqeq2d |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ∧ dom 𝐹 = ( 𝑚 ... 𝑛 ) ) ) → ( 𝑥 = ( seq 𝑚 ( ( +g ‘ 𝐺 ) , 𝐹 ) ‘ 𝑛 ) ↔ 𝑥 = ( seq 𝑚 ( ( +g ‘ 𝐻 ) , 𝐹 ) ‘ 𝑛 ) ) ) |
| 37 |
36
|
anassrs |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ) ∧ dom 𝐹 = ( 𝑚 ... 𝑛 ) ) → ( 𝑥 = ( seq 𝑚 ( ( +g ‘ 𝐺 ) , 𝐹 ) ‘ 𝑛 ) ↔ 𝑥 = ( seq 𝑚 ( ( +g ‘ 𝐻 ) , 𝐹 ) ‘ 𝑛 ) ) ) |
| 38 |
37
|
pm5.32da |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ) → ( ( dom 𝐹 = ( 𝑚 ... 𝑛 ) ∧ 𝑥 = ( seq 𝑚 ( ( +g ‘ 𝐺 ) , 𝐹 ) ‘ 𝑛 ) ) ↔ ( dom 𝐹 = ( 𝑚 ... 𝑛 ) ∧ 𝑥 = ( seq 𝑚 ( ( +g ‘ 𝐻 ) , 𝐹 ) ‘ 𝑛 ) ) ) ) |
| 39 |
38
|
rexbidva |
⊢ ( 𝜑 → ( ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ( dom 𝐹 = ( 𝑚 ... 𝑛 ) ∧ 𝑥 = ( seq 𝑚 ( ( +g ‘ 𝐺 ) , 𝐹 ) ‘ 𝑛 ) ) ↔ ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ( dom 𝐹 = ( 𝑚 ... 𝑛 ) ∧ 𝑥 = ( seq 𝑚 ( ( +g ‘ 𝐻 ) , 𝐹 ) ‘ 𝑛 ) ) ) ) |
| 40 |
39
|
exbidv |
⊢ ( 𝜑 → ( ∃ 𝑚 ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ( dom 𝐹 = ( 𝑚 ... 𝑛 ) ∧ 𝑥 = ( seq 𝑚 ( ( +g ‘ 𝐺 ) , 𝐹 ) ‘ 𝑛 ) ) ↔ ∃ 𝑚 ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ( dom 𝐹 = ( 𝑚 ... 𝑛 ) ∧ 𝑥 = ( seq 𝑚 ( ( +g ‘ 𝐻 ) , 𝐹 ) ‘ 𝑛 ) ) ) ) |
| 41 |
40
|
iotabidv |
⊢ ( 𝜑 → ( ℩ 𝑥 ∃ 𝑚 ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ( dom 𝐹 = ( 𝑚 ... 𝑛 ) ∧ 𝑥 = ( seq 𝑚 ( ( +g ‘ 𝐺 ) , 𝐹 ) ‘ 𝑛 ) ) ) = ( ℩ 𝑥 ∃ 𝑚 ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ( dom 𝐹 = ( 𝑚 ... 𝑛 ) ∧ 𝑥 = ( seq 𝑚 ( ( +g ‘ 𝐻 ) , 𝐹 ) ‘ 𝑛 ) ) ) ) |
| 42 |
20
|
difeq2d |
⊢ ( 𝜑 → ( V ∖ { 𝑠 ∈ ( Base ‘ 𝐺 ) ∣ ∀ 𝑡 ∈ ( Base ‘ 𝐺 ) ( ( 𝑠 ( +g ‘ 𝐺 ) 𝑡 ) = 𝑡 ∧ ( 𝑡 ( +g ‘ 𝐺 ) 𝑠 ) = 𝑡 ) } ) = ( V ∖ { 𝑠 ∈ ( Base ‘ 𝐻 ) ∣ ∀ 𝑡 ∈ ( Base ‘ 𝐻 ) ( ( 𝑠 ( +g ‘ 𝐻 ) 𝑡 ) = 𝑡 ∧ ( 𝑡 ( +g ‘ 𝐻 ) 𝑠 ) = 𝑡 ) } ) ) |
| 43 |
42
|
imaeq2d |
⊢ ( 𝜑 → ( ◡ 𝐹 “ ( V ∖ { 𝑠 ∈ ( Base ‘ 𝐺 ) ∣ ∀ 𝑡 ∈ ( Base ‘ 𝐺 ) ( ( 𝑠 ( +g ‘ 𝐺 ) 𝑡 ) = 𝑡 ∧ ( 𝑡 ( +g ‘ 𝐺 ) 𝑠 ) = 𝑡 ) } ) ) = ( ◡ 𝐹 “ ( V ∖ { 𝑠 ∈ ( Base ‘ 𝐻 ) ∣ ∀ 𝑡 ∈ ( Base ‘ 𝐻 ) ( ( 𝑠 ( +g ‘ 𝐻 ) 𝑡 ) = 𝑡 ∧ ( 𝑡 ( +g ‘ 𝐻 ) 𝑠 ) = 𝑡 ) } ) ) ) |
| 44 |
43 9 10
|
3eqtr4g |
⊢ ( 𝜑 → 𝐴 = 𝐵 ) |
| 45 |
44
|
fveq2d |
⊢ ( 𝜑 → ( ♯ ‘ 𝐴 ) = ( ♯ ‘ 𝐵 ) ) |
| 46 |
45
|
fveq2d |
⊢ ( 𝜑 → ( seq 1 ( ( +g ‘ 𝐺 ) , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝐴 ) ) = ( seq 1 ( ( +g ‘ 𝐺 ) , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝐵 ) ) ) |
| 47 |
46
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) → ( seq 1 ( ( +g ‘ 𝐺 ) , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝐴 ) ) = ( seq 1 ( ( +g ‘ 𝐺 ) , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝐵 ) ) ) |
| 48 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ∧ ( ♯ ‘ 𝐵 ) ∈ ( ℤ≥ ‘ 1 ) ) → ( ♯ ‘ 𝐵 ) ∈ ( ℤ≥ ‘ 1 ) ) |
| 49 |
8
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ∧ ( ♯ ‘ 𝐵 ) ∈ ( ℤ≥ ‘ 1 ) ) ∧ 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ) → ran 𝐹 ⊆ ( Base ‘ 𝐺 ) ) |
| 50 |
|
f1ofun |
⊢ ( 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 → Fun 𝑓 ) |
| 51 |
50
|
ad3antlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ∧ ( ♯ ‘ 𝐵 ) ∈ ( ℤ≥ ‘ 1 ) ) ∧ 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ) → Fun 𝑓 ) |
| 52 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ∧ ( ♯ ‘ 𝐵 ) ∈ ( ℤ≥ ‘ 1 ) ) ∧ 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ) → 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ) |
| 53 |
|
f1odm |
⊢ ( 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 → dom 𝑓 = ( 1 ... ( ♯ ‘ 𝐴 ) ) ) |
| 54 |
53
|
ad3antlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ∧ ( ♯ ‘ 𝐵 ) ∈ ( ℤ≥ ‘ 1 ) ) ∧ 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ) → dom 𝑓 = ( 1 ... ( ♯ ‘ 𝐴 ) ) ) |
| 55 |
45
|
oveq2d |
⊢ ( 𝜑 → ( 1 ... ( ♯ ‘ 𝐴 ) ) = ( 1 ... ( ♯ ‘ 𝐵 ) ) ) |
| 56 |
55
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ∧ ( ♯ ‘ 𝐵 ) ∈ ( ℤ≥ ‘ 1 ) ) ∧ 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ) → ( 1 ... ( ♯ ‘ 𝐴 ) ) = ( 1 ... ( ♯ ‘ 𝐵 ) ) ) |
| 57 |
54 56
|
eqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ∧ ( ♯ ‘ 𝐵 ) ∈ ( ℤ≥ ‘ 1 ) ) ∧ 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ) → dom 𝑓 = ( 1 ... ( ♯ ‘ 𝐵 ) ) ) |
| 58 |
52 57
|
eleqtrrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ∧ ( ♯ ‘ 𝐵 ) ∈ ( ℤ≥ ‘ 1 ) ) ∧ 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ) → 𝑎 ∈ dom 𝑓 ) |
| 59 |
|
fvco |
⊢ ( ( Fun 𝑓 ∧ 𝑎 ∈ dom 𝑓 ) → ( ( 𝐹 ∘ 𝑓 ) ‘ 𝑎 ) = ( 𝐹 ‘ ( 𝑓 ‘ 𝑎 ) ) ) |
| 60 |
51 58 59
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ∧ ( ♯ ‘ 𝐵 ) ∈ ( ℤ≥ ‘ 1 ) ) ∧ 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ) → ( ( 𝐹 ∘ 𝑓 ) ‘ 𝑎 ) = ( 𝐹 ‘ ( 𝑓 ‘ 𝑎 ) ) ) |
| 61 |
7
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ∧ ( ♯ ‘ 𝐵 ) ∈ ( ℤ≥ ‘ 1 ) ) ∧ 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ) → Fun 𝐹 ) |
| 62 |
|
difpreima |
⊢ ( Fun 𝐹 → ( ◡ 𝐹 “ ( V ∖ { 𝑠 ∈ ( Base ‘ 𝐺 ) ∣ ∀ 𝑡 ∈ ( Base ‘ 𝐺 ) ( ( 𝑠 ( +g ‘ 𝐺 ) 𝑡 ) = 𝑡 ∧ ( 𝑡 ( +g ‘ 𝐺 ) 𝑠 ) = 𝑡 ) } ) ) = ( ( ◡ 𝐹 “ V ) ∖ ( ◡ 𝐹 “ { 𝑠 ∈ ( Base ‘ 𝐺 ) ∣ ∀ 𝑡 ∈ ( Base ‘ 𝐺 ) ( ( 𝑠 ( +g ‘ 𝐺 ) 𝑡 ) = 𝑡 ∧ ( 𝑡 ( +g ‘ 𝐺 ) 𝑠 ) = 𝑡 ) } ) ) ) |
| 63 |
7 62
|
syl |
⊢ ( 𝜑 → ( ◡ 𝐹 “ ( V ∖ { 𝑠 ∈ ( Base ‘ 𝐺 ) ∣ ∀ 𝑡 ∈ ( Base ‘ 𝐺 ) ( ( 𝑠 ( +g ‘ 𝐺 ) 𝑡 ) = 𝑡 ∧ ( 𝑡 ( +g ‘ 𝐺 ) 𝑠 ) = 𝑡 ) } ) ) = ( ( ◡ 𝐹 “ V ) ∖ ( ◡ 𝐹 “ { 𝑠 ∈ ( Base ‘ 𝐺 ) ∣ ∀ 𝑡 ∈ ( Base ‘ 𝐺 ) ( ( 𝑠 ( +g ‘ 𝐺 ) 𝑡 ) = 𝑡 ∧ ( 𝑡 ( +g ‘ 𝐺 ) 𝑠 ) = 𝑡 ) } ) ) ) |
| 64 |
9 63
|
eqtrid |
⊢ ( 𝜑 → 𝐴 = ( ( ◡ 𝐹 “ V ) ∖ ( ◡ 𝐹 “ { 𝑠 ∈ ( Base ‘ 𝐺 ) ∣ ∀ 𝑡 ∈ ( Base ‘ 𝐺 ) ( ( 𝑠 ( +g ‘ 𝐺 ) 𝑡 ) = 𝑡 ∧ ( 𝑡 ( +g ‘ 𝐺 ) 𝑠 ) = 𝑡 ) } ) ) ) |
| 65 |
|
difss |
⊢ ( ( ◡ 𝐹 “ V ) ∖ ( ◡ 𝐹 “ { 𝑠 ∈ ( Base ‘ 𝐺 ) ∣ ∀ 𝑡 ∈ ( Base ‘ 𝐺 ) ( ( 𝑠 ( +g ‘ 𝐺 ) 𝑡 ) = 𝑡 ∧ ( 𝑡 ( +g ‘ 𝐺 ) 𝑠 ) = 𝑡 ) } ) ) ⊆ ( ◡ 𝐹 “ V ) |
| 66 |
64 65
|
eqsstrdi |
⊢ ( 𝜑 → 𝐴 ⊆ ( ◡ 𝐹 “ V ) ) |
| 67 |
|
dfdm4 |
⊢ dom 𝐹 = ran ◡ 𝐹 |
| 68 |
|
dfrn4 |
⊢ ran ◡ 𝐹 = ( ◡ 𝐹 “ V ) |
| 69 |
67 68
|
eqtri |
⊢ dom 𝐹 = ( ◡ 𝐹 “ V ) |
| 70 |
66 69
|
sseqtrrdi |
⊢ ( 𝜑 → 𝐴 ⊆ dom 𝐹 ) |
| 71 |
70
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ∧ ( ♯ ‘ 𝐵 ) ∈ ( ℤ≥ ‘ 1 ) ) ∧ 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ) → 𝐴 ⊆ dom 𝐹 ) |
| 72 |
|
f1of |
⊢ ( 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 → 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) ⟶ 𝐴 ) |
| 73 |
72
|
ad3antlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ∧ ( ♯ ‘ 𝐵 ) ∈ ( ℤ≥ ‘ 1 ) ) ∧ 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ) → 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) ⟶ 𝐴 ) |
| 74 |
52 56
|
eleqtrrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ∧ ( ♯ ‘ 𝐵 ) ∈ ( ℤ≥ ‘ 1 ) ) ∧ 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ) → 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) |
| 75 |
73 74
|
ffvelcdmd |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ∧ ( ♯ ‘ 𝐵 ) ∈ ( ℤ≥ ‘ 1 ) ) ∧ 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ) → ( 𝑓 ‘ 𝑎 ) ∈ 𝐴 ) |
| 76 |
71 75
|
sseldd |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ∧ ( ♯ ‘ 𝐵 ) ∈ ( ℤ≥ ‘ 1 ) ) ∧ 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ) → ( 𝑓 ‘ 𝑎 ) ∈ dom 𝐹 ) |
| 77 |
|
fvelrn |
⊢ ( ( Fun 𝐹 ∧ ( 𝑓 ‘ 𝑎 ) ∈ dom 𝐹 ) → ( 𝐹 ‘ ( 𝑓 ‘ 𝑎 ) ) ∈ ran 𝐹 ) |
| 78 |
61 76 77
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ∧ ( ♯ ‘ 𝐵 ) ∈ ( ℤ≥ ‘ 1 ) ) ∧ 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ) → ( 𝐹 ‘ ( 𝑓 ‘ 𝑎 ) ) ∈ ran 𝐹 ) |
| 79 |
60 78
|
eqeltrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ∧ ( ♯ ‘ 𝐵 ) ∈ ( ℤ≥ ‘ 1 ) ) ∧ 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ) → ( ( 𝐹 ∘ 𝑓 ) ‘ 𝑎 ) ∈ ran 𝐹 ) |
| 80 |
49 79
|
sseldd |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ∧ ( ♯ ‘ 𝐵 ) ∈ ( ℤ≥ ‘ 1 ) ) ∧ 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ) → ( ( 𝐹 ∘ 𝑓 ) ‘ 𝑎 ) ∈ ( Base ‘ 𝐺 ) ) |
| 81 |
5
|
caovclg |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝐺 ) ∧ 𝑏 ∈ ( Base ‘ 𝐺 ) ) ) → ( 𝑎 ( +g ‘ 𝐺 ) 𝑏 ) ∈ ( Base ‘ 𝐺 ) ) |
| 82 |
81
|
ad4ant14 |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ∧ ( ♯ ‘ 𝐵 ) ∈ ( ℤ≥ ‘ 1 ) ) ∧ ( 𝑎 ∈ ( Base ‘ 𝐺 ) ∧ 𝑏 ∈ ( Base ‘ 𝐺 ) ) ) → ( 𝑎 ( +g ‘ 𝐺 ) 𝑏 ) ∈ ( Base ‘ 𝐺 ) ) |
| 83 |
13
|
ad4ant14 |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ∧ ( ♯ ‘ 𝐵 ) ∈ ( ℤ≥ ‘ 1 ) ) ∧ ( 𝑎 ∈ ( Base ‘ 𝐺 ) ∧ 𝑏 ∈ ( Base ‘ 𝐺 ) ) ) → ( 𝑎 ( +g ‘ 𝐺 ) 𝑏 ) = ( 𝑎 ( +g ‘ 𝐻 ) 𝑏 ) ) |
| 84 |
48 80 82 83
|
seqfeq4 |
⊢ ( ( ( 𝜑 ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ∧ ( ♯ ‘ 𝐵 ) ∈ ( ℤ≥ ‘ 1 ) ) → ( seq 1 ( ( +g ‘ 𝐺 ) , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝐵 ) ) = ( seq 1 ( ( +g ‘ 𝐻 ) , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝐵 ) ) ) |
| 85 |
|
simpr |
⊢ ( ( 𝜑 ∧ ¬ ( ♯ ‘ 𝐵 ) ∈ ( ℤ≥ ‘ 1 ) ) → ¬ ( ♯ ‘ 𝐵 ) ∈ ( ℤ≥ ‘ 1 ) ) |
| 86 |
|
1z |
⊢ 1 ∈ ℤ |
| 87 |
|
seqfn |
⊢ ( 1 ∈ ℤ → seq 1 ( ( +g ‘ 𝐺 ) , ( 𝐹 ∘ 𝑓 ) ) Fn ( ℤ≥ ‘ 1 ) ) |
| 88 |
|
fndm |
⊢ ( seq 1 ( ( +g ‘ 𝐺 ) , ( 𝐹 ∘ 𝑓 ) ) Fn ( ℤ≥ ‘ 1 ) → dom seq 1 ( ( +g ‘ 𝐺 ) , ( 𝐹 ∘ 𝑓 ) ) = ( ℤ≥ ‘ 1 ) ) |
| 89 |
86 87 88
|
mp2b |
⊢ dom seq 1 ( ( +g ‘ 𝐺 ) , ( 𝐹 ∘ 𝑓 ) ) = ( ℤ≥ ‘ 1 ) |
| 90 |
89
|
eleq2i |
⊢ ( ( ♯ ‘ 𝐵 ) ∈ dom seq 1 ( ( +g ‘ 𝐺 ) , ( 𝐹 ∘ 𝑓 ) ) ↔ ( ♯ ‘ 𝐵 ) ∈ ( ℤ≥ ‘ 1 ) ) |
| 91 |
85 90
|
sylnibr |
⊢ ( ( 𝜑 ∧ ¬ ( ♯ ‘ 𝐵 ) ∈ ( ℤ≥ ‘ 1 ) ) → ¬ ( ♯ ‘ 𝐵 ) ∈ dom seq 1 ( ( +g ‘ 𝐺 ) , ( 𝐹 ∘ 𝑓 ) ) ) |
| 92 |
|
ndmfv |
⊢ ( ¬ ( ♯ ‘ 𝐵 ) ∈ dom seq 1 ( ( +g ‘ 𝐺 ) , ( 𝐹 ∘ 𝑓 ) ) → ( seq 1 ( ( +g ‘ 𝐺 ) , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝐵 ) ) = ∅ ) |
| 93 |
91 92
|
syl |
⊢ ( ( 𝜑 ∧ ¬ ( ♯ ‘ 𝐵 ) ∈ ( ℤ≥ ‘ 1 ) ) → ( seq 1 ( ( +g ‘ 𝐺 ) , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝐵 ) ) = ∅ ) |
| 94 |
|
seqfn |
⊢ ( 1 ∈ ℤ → seq 1 ( ( +g ‘ 𝐻 ) , ( 𝐹 ∘ 𝑓 ) ) Fn ( ℤ≥ ‘ 1 ) ) |
| 95 |
|
fndm |
⊢ ( seq 1 ( ( +g ‘ 𝐻 ) , ( 𝐹 ∘ 𝑓 ) ) Fn ( ℤ≥ ‘ 1 ) → dom seq 1 ( ( +g ‘ 𝐻 ) , ( 𝐹 ∘ 𝑓 ) ) = ( ℤ≥ ‘ 1 ) ) |
| 96 |
86 94 95
|
mp2b |
⊢ dom seq 1 ( ( +g ‘ 𝐻 ) , ( 𝐹 ∘ 𝑓 ) ) = ( ℤ≥ ‘ 1 ) |
| 97 |
96
|
eleq2i |
⊢ ( ( ♯ ‘ 𝐵 ) ∈ dom seq 1 ( ( +g ‘ 𝐻 ) , ( 𝐹 ∘ 𝑓 ) ) ↔ ( ♯ ‘ 𝐵 ) ∈ ( ℤ≥ ‘ 1 ) ) |
| 98 |
85 97
|
sylnibr |
⊢ ( ( 𝜑 ∧ ¬ ( ♯ ‘ 𝐵 ) ∈ ( ℤ≥ ‘ 1 ) ) → ¬ ( ♯ ‘ 𝐵 ) ∈ dom seq 1 ( ( +g ‘ 𝐻 ) , ( 𝐹 ∘ 𝑓 ) ) ) |
| 99 |
|
ndmfv |
⊢ ( ¬ ( ♯ ‘ 𝐵 ) ∈ dom seq 1 ( ( +g ‘ 𝐻 ) , ( 𝐹 ∘ 𝑓 ) ) → ( seq 1 ( ( +g ‘ 𝐻 ) , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝐵 ) ) = ∅ ) |
| 100 |
98 99
|
syl |
⊢ ( ( 𝜑 ∧ ¬ ( ♯ ‘ 𝐵 ) ∈ ( ℤ≥ ‘ 1 ) ) → ( seq 1 ( ( +g ‘ 𝐻 ) , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝐵 ) ) = ∅ ) |
| 101 |
93 100
|
eqtr4d |
⊢ ( ( 𝜑 ∧ ¬ ( ♯ ‘ 𝐵 ) ∈ ( ℤ≥ ‘ 1 ) ) → ( seq 1 ( ( +g ‘ 𝐺 ) , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝐵 ) ) = ( seq 1 ( ( +g ‘ 𝐻 ) , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝐵 ) ) ) |
| 102 |
101
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ∧ ¬ ( ♯ ‘ 𝐵 ) ∈ ( ℤ≥ ‘ 1 ) ) → ( seq 1 ( ( +g ‘ 𝐺 ) , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝐵 ) ) = ( seq 1 ( ( +g ‘ 𝐻 ) , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝐵 ) ) ) |
| 103 |
84 102
|
pm2.61dan |
⊢ ( ( 𝜑 ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) → ( seq 1 ( ( +g ‘ 𝐺 ) , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝐵 ) ) = ( seq 1 ( ( +g ‘ 𝐻 ) , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝐵 ) ) ) |
| 104 |
47 103
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) → ( seq 1 ( ( +g ‘ 𝐺 ) , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝐴 ) ) = ( seq 1 ( ( +g ‘ 𝐻 ) , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝐵 ) ) ) |
| 105 |
104
|
eqeq2d |
⊢ ( ( 𝜑 ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) → ( 𝑥 = ( seq 1 ( ( +g ‘ 𝐺 ) , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝐴 ) ) ↔ 𝑥 = ( seq 1 ( ( +g ‘ 𝐻 ) , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝐵 ) ) ) ) |
| 106 |
105
|
pm5.32da |
⊢ ( 𝜑 → ( ( 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( ( +g ‘ 𝐺 ) , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝐴 ) ) ) ↔ ( 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( ( +g ‘ 𝐻 ) , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝐵 ) ) ) ) ) |
| 107 |
55
|
f1oeq2d |
⊢ ( 𝜑 → ( 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ↔ 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto→ 𝐴 ) ) |
| 108 |
44
|
f1oeq3d |
⊢ ( 𝜑 → ( 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto→ 𝐴 ↔ 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto→ 𝐵 ) ) |
| 109 |
107 108
|
bitrd |
⊢ ( 𝜑 → ( 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ↔ 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto→ 𝐵 ) ) |
| 110 |
109
|
anbi1d |
⊢ ( 𝜑 → ( ( 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( ( +g ‘ 𝐻 ) , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝐵 ) ) ) ↔ ( 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto→ 𝐵 ∧ 𝑥 = ( seq 1 ( ( +g ‘ 𝐻 ) , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝐵 ) ) ) ) ) |
| 111 |
106 110
|
bitrd |
⊢ ( 𝜑 → ( ( 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( ( +g ‘ 𝐺 ) , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝐴 ) ) ) ↔ ( 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto→ 𝐵 ∧ 𝑥 = ( seq 1 ( ( +g ‘ 𝐻 ) , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝐵 ) ) ) ) ) |
| 112 |
111
|
exbidv |
⊢ ( 𝜑 → ( ∃ 𝑓 ( 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( ( +g ‘ 𝐺 ) , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝐴 ) ) ) ↔ ∃ 𝑓 ( 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto→ 𝐵 ∧ 𝑥 = ( seq 1 ( ( +g ‘ 𝐻 ) , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝐵 ) ) ) ) ) |
| 113 |
112
|
iotabidv |
⊢ ( 𝜑 → ( ℩ 𝑥 ∃ 𝑓 ( 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( ( +g ‘ 𝐺 ) , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝐴 ) ) ) ) = ( ℩ 𝑥 ∃ 𝑓 ( 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto→ 𝐵 ∧ 𝑥 = ( seq 1 ( ( +g ‘ 𝐻 ) , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝐵 ) ) ) ) ) |
| 114 |
41 113
|
ifeq12d |
⊢ ( 𝜑 → if ( dom 𝐹 ∈ ran ... , ( ℩ 𝑥 ∃ 𝑚 ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ( dom 𝐹 = ( 𝑚 ... 𝑛 ) ∧ 𝑥 = ( seq 𝑚 ( ( +g ‘ 𝐺 ) , 𝐹 ) ‘ 𝑛 ) ) ) , ( ℩ 𝑥 ∃ 𝑓 ( 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( ( +g ‘ 𝐺 ) , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝐴 ) ) ) ) ) = if ( dom 𝐹 ∈ ran ... , ( ℩ 𝑥 ∃ 𝑚 ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ( dom 𝐹 = ( 𝑚 ... 𝑛 ) ∧ 𝑥 = ( seq 𝑚 ( ( +g ‘ 𝐻 ) , 𝐹 ) ‘ 𝑛 ) ) ) , ( ℩ 𝑥 ∃ 𝑓 ( 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto→ 𝐵 ∧ 𝑥 = ( seq 1 ( ( +g ‘ 𝐻 ) , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝐵 ) ) ) ) ) ) |
| 115 |
21 23 114
|
ifbieq12d |
⊢ ( 𝜑 → if ( ran 𝐹 ⊆ { 𝑠 ∈ ( Base ‘ 𝐺 ) ∣ ∀ 𝑡 ∈ ( Base ‘ 𝐺 ) ( ( 𝑠 ( +g ‘ 𝐺 ) 𝑡 ) = 𝑡 ∧ ( 𝑡 ( +g ‘ 𝐺 ) 𝑠 ) = 𝑡 ) } , ( 0g ‘ 𝐺 ) , if ( dom 𝐹 ∈ ran ... , ( ℩ 𝑥 ∃ 𝑚 ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ( dom 𝐹 = ( 𝑚 ... 𝑛 ) ∧ 𝑥 = ( seq 𝑚 ( ( +g ‘ 𝐺 ) , 𝐹 ) ‘ 𝑛 ) ) ) , ( ℩ 𝑥 ∃ 𝑓 ( 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( ( +g ‘ 𝐺 ) , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝐴 ) ) ) ) ) ) = if ( ran 𝐹 ⊆ { 𝑠 ∈ ( Base ‘ 𝐻 ) ∣ ∀ 𝑡 ∈ ( Base ‘ 𝐻 ) ( ( 𝑠 ( +g ‘ 𝐻 ) 𝑡 ) = 𝑡 ∧ ( 𝑡 ( +g ‘ 𝐻 ) 𝑠 ) = 𝑡 ) } , ( 0g ‘ 𝐻 ) , if ( dom 𝐹 ∈ ran ... , ( ℩ 𝑥 ∃ 𝑚 ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ( dom 𝐹 = ( 𝑚 ... 𝑛 ) ∧ 𝑥 = ( seq 𝑚 ( ( +g ‘ 𝐻 ) , 𝐹 ) ‘ 𝑛 ) ) ) , ( ℩ 𝑥 ∃ 𝑓 ( 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto→ 𝐵 ∧ 𝑥 = ( seq 1 ( ( +g ‘ 𝐻 ) , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝐵 ) ) ) ) ) ) ) |
| 116 |
|
eqid |
⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) |
| 117 |
|
eqid |
⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) |
| 118 |
|
eqid |
⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) |
| 119 |
|
eqid |
⊢ { 𝑠 ∈ ( Base ‘ 𝐺 ) ∣ ∀ 𝑡 ∈ ( Base ‘ 𝐺 ) ( ( 𝑠 ( +g ‘ 𝐺 ) 𝑡 ) = 𝑡 ∧ ( 𝑡 ( +g ‘ 𝐺 ) 𝑠 ) = 𝑡 ) } = { 𝑠 ∈ ( Base ‘ 𝐺 ) ∣ ∀ 𝑡 ∈ ( Base ‘ 𝐺 ) ( ( 𝑠 ( +g ‘ 𝐺 ) 𝑡 ) = 𝑡 ∧ ( 𝑡 ( +g ‘ 𝐺 ) 𝑠 ) = 𝑡 ) } |
| 120 |
9
|
a1i |
⊢ ( 𝜑 → 𝐴 = ( ◡ 𝐹 “ ( V ∖ { 𝑠 ∈ ( Base ‘ 𝐺 ) ∣ ∀ 𝑡 ∈ ( Base ‘ 𝐺 ) ( ( 𝑠 ( +g ‘ 𝐺 ) 𝑡 ) = 𝑡 ∧ ( 𝑡 ( +g ‘ 𝐺 ) 𝑠 ) = 𝑡 ) } ) ) ) |
| 121 |
|
eqidd |
⊢ ( 𝜑 → dom 𝐹 = dom 𝐹 ) |
| 122 |
116 117 118 119 120 2 1 121
|
gsumvalx |
⊢ ( 𝜑 → ( 𝐺 Σg 𝐹 ) = if ( ran 𝐹 ⊆ { 𝑠 ∈ ( Base ‘ 𝐺 ) ∣ ∀ 𝑡 ∈ ( Base ‘ 𝐺 ) ( ( 𝑠 ( +g ‘ 𝐺 ) 𝑡 ) = 𝑡 ∧ ( 𝑡 ( +g ‘ 𝐺 ) 𝑠 ) = 𝑡 ) } , ( 0g ‘ 𝐺 ) , if ( dom 𝐹 ∈ ran ... , ( ℩ 𝑥 ∃ 𝑚 ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ( dom 𝐹 = ( 𝑚 ... 𝑛 ) ∧ 𝑥 = ( seq 𝑚 ( ( +g ‘ 𝐺 ) , 𝐹 ) ‘ 𝑛 ) ) ) , ( ℩ 𝑥 ∃ 𝑓 ( 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( ( +g ‘ 𝐺 ) , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝐴 ) ) ) ) ) ) ) |
| 123 |
|
eqid |
⊢ ( Base ‘ 𝐻 ) = ( Base ‘ 𝐻 ) |
| 124 |
|
eqid |
⊢ ( 0g ‘ 𝐻 ) = ( 0g ‘ 𝐻 ) |
| 125 |
|
eqid |
⊢ ( +g ‘ 𝐻 ) = ( +g ‘ 𝐻 ) |
| 126 |
|
eqid |
⊢ { 𝑠 ∈ ( Base ‘ 𝐻 ) ∣ ∀ 𝑡 ∈ ( Base ‘ 𝐻 ) ( ( 𝑠 ( +g ‘ 𝐻 ) 𝑡 ) = 𝑡 ∧ ( 𝑡 ( +g ‘ 𝐻 ) 𝑠 ) = 𝑡 ) } = { 𝑠 ∈ ( Base ‘ 𝐻 ) ∣ ∀ 𝑡 ∈ ( Base ‘ 𝐻 ) ( ( 𝑠 ( +g ‘ 𝐻 ) 𝑡 ) = 𝑡 ∧ ( 𝑡 ( +g ‘ 𝐻 ) 𝑠 ) = 𝑡 ) } |
| 127 |
10
|
a1i |
⊢ ( 𝜑 → 𝐵 = ( ◡ 𝐹 “ ( V ∖ { 𝑠 ∈ ( Base ‘ 𝐻 ) ∣ ∀ 𝑡 ∈ ( Base ‘ 𝐻 ) ( ( 𝑠 ( +g ‘ 𝐻 ) 𝑡 ) = 𝑡 ∧ ( 𝑡 ( +g ‘ 𝐻 ) 𝑠 ) = 𝑡 ) } ) ) ) |
| 128 |
123 124 125 126 127 3 1 121
|
gsumvalx |
⊢ ( 𝜑 → ( 𝐻 Σg 𝐹 ) = if ( ran 𝐹 ⊆ { 𝑠 ∈ ( Base ‘ 𝐻 ) ∣ ∀ 𝑡 ∈ ( Base ‘ 𝐻 ) ( ( 𝑠 ( +g ‘ 𝐻 ) 𝑡 ) = 𝑡 ∧ ( 𝑡 ( +g ‘ 𝐻 ) 𝑠 ) = 𝑡 ) } , ( 0g ‘ 𝐻 ) , if ( dom 𝐹 ∈ ran ... , ( ℩ 𝑥 ∃ 𝑚 ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ( dom 𝐹 = ( 𝑚 ... 𝑛 ) ∧ 𝑥 = ( seq 𝑚 ( ( +g ‘ 𝐻 ) , 𝐹 ) ‘ 𝑛 ) ) ) , ( ℩ 𝑥 ∃ 𝑓 ( 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto→ 𝐵 ∧ 𝑥 = ( seq 1 ( ( +g ‘ 𝐻 ) , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝐵 ) ) ) ) ) ) ) |
| 129 |
115 122 128
|
3eqtr4d |
⊢ ( 𝜑 → ( 𝐺 Σg 𝐹 ) = ( 𝐻 Σg 𝐹 ) ) |