Metamath Proof Explorer


Theorem gsumpropd2lem

Description: Lemma for gsumpropd2 . (Contributed by Thierry Arnoux, 28-Jun-2017)

Ref Expression
Hypotheses gsumpropd2.f ( 𝜑𝐹𝑉 )
gsumpropd2.g ( 𝜑𝐺𝑊 )
gsumpropd2.h ( 𝜑𝐻𝑋 )
gsumpropd2.b ( 𝜑 → ( Base ‘ 𝐺 ) = ( Base ‘ 𝐻 ) )
gsumpropd2.c ( ( 𝜑 ∧ ( 𝑠 ∈ ( Base ‘ 𝐺 ) ∧ 𝑡 ∈ ( Base ‘ 𝐺 ) ) ) → ( 𝑠 ( +g𝐺 ) 𝑡 ) ∈ ( Base ‘ 𝐺 ) )
gsumpropd2.e ( ( 𝜑 ∧ ( 𝑠 ∈ ( Base ‘ 𝐺 ) ∧ 𝑡 ∈ ( Base ‘ 𝐺 ) ) ) → ( 𝑠 ( +g𝐺 ) 𝑡 ) = ( 𝑠 ( +g𝐻 ) 𝑡 ) )
gsumpropd2.n ( 𝜑 → Fun 𝐹 )
gsumpropd2.r ( 𝜑 → ran 𝐹 ⊆ ( Base ‘ 𝐺 ) )
gsumprop2dlem.1 𝐴 = ( 𝐹 “ ( V ∖ { 𝑠 ∈ ( Base ‘ 𝐺 ) ∣ ∀ 𝑡 ∈ ( Base ‘ 𝐺 ) ( ( 𝑠 ( +g𝐺 ) 𝑡 ) = 𝑡 ∧ ( 𝑡 ( +g𝐺 ) 𝑠 ) = 𝑡 ) } ) )
gsumprop2dlem.2 𝐵 = ( 𝐹 “ ( V ∖ { 𝑠 ∈ ( Base ‘ 𝐻 ) ∣ ∀ 𝑡 ∈ ( Base ‘ 𝐻 ) ( ( 𝑠 ( +g𝐻 ) 𝑡 ) = 𝑡 ∧ ( 𝑡 ( +g𝐻 ) 𝑠 ) = 𝑡 ) } ) )
Assertion gsumpropd2lem ( 𝜑 → ( 𝐺 Σg 𝐹 ) = ( 𝐻 Σg 𝐹 ) )

Proof

Step Hyp Ref Expression
1 gsumpropd2.f ( 𝜑𝐹𝑉 )
2 gsumpropd2.g ( 𝜑𝐺𝑊 )
3 gsumpropd2.h ( 𝜑𝐻𝑋 )
4 gsumpropd2.b ( 𝜑 → ( Base ‘ 𝐺 ) = ( Base ‘ 𝐻 ) )
5 gsumpropd2.c ( ( 𝜑 ∧ ( 𝑠 ∈ ( Base ‘ 𝐺 ) ∧ 𝑡 ∈ ( Base ‘ 𝐺 ) ) ) → ( 𝑠 ( +g𝐺 ) 𝑡 ) ∈ ( Base ‘ 𝐺 ) )
6 gsumpropd2.e ( ( 𝜑 ∧ ( 𝑠 ∈ ( Base ‘ 𝐺 ) ∧ 𝑡 ∈ ( Base ‘ 𝐺 ) ) ) → ( 𝑠 ( +g𝐺 ) 𝑡 ) = ( 𝑠 ( +g𝐻 ) 𝑡 ) )
7 gsumpropd2.n ( 𝜑 → Fun 𝐹 )
8 gsumpropd2.r ( 𝜑 → ran 𝐹 ⊆ ( Base ‘ 𝐺 ) )
9 gsumprop2dlem.1 𝐴 = ( 𝐹 “ ( V ∖ { 𝑠 ∈ ( Base ‘ 𝐺 ) ∣ ∀ 𝑡 ∈ ( Base ‘ 𝐺 ) ( ( 𝑠 ( +g𝐺 ) 𝑡 ) = 𝑡 ∧ ( 𝑡 ( +g𝐺 ) 𝑠 ) = 𝑡 ) } ) )
10 gsumprop2dlem.2 𝐵 = ( 𝐹 “ ( V ∖ { 𝑠 ∈ ( Base ‘ 𝐻 ) ∣ ∀ 𝑡 ∈ ( Base ‘ 𝐻 ) ( ( 𝑠 ( +g𝐻 ) 𝑡 ) = 𝑡 ∧ ( 𝑡 ( +g𝐻 ) 𝑠 ) = 𝑡 ) } ) )
11 4 adantr ( ( 𝜑𝑠 ∈ ( Base ‘ 𝐺 ) ) → ( Base ‘ 𝐺 ) = ( Base ‘ 𝐻 ) )
12 6 eqeq1d ( ( 𝜑 ∧ ( 𝑠 ∈ ( Base ‘ 𝐺 ) ∧ 𝑡 ∈ ( Base ‘ 𝐺 ) ) ) → ( ( 𝑠 ( +g𝐺 ) 𝑡 ) = 𝑡 ↔ ( 𝑠 ( +g𝐻 ) 𝑡 ) = 𝑡 ) )
13 6 oveqrspc2v ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝐺 ) ∧ 𝑏 ∈ ( Base ‘ 𝐺 ) ) ) → ( 𝑎 ( +g𝐺 ) 𝑏 ) = ( 𝑎 ( +g𝐻 ) 𝑏 ) )
14 13 oveqrspc2v ( ( 𝜑 ∧ ( 𝑡 ∈ ( Base ‘ 𝐺 ) ∧ 𝑠 ∈ ( Base ‘ 𝐺 ) ) ) → ( 𝑡 ( +g𝐺 ) 𝑠 ) = ( 𝑡 ( +g𝐻 ) 𝑠 ) )
15 14 ancom2s ( ( 𝜑 ∧ ( 𝑠 ∈ ( Base ‘ 𝐺 ) ∧ 𝑡 ∈ ( Base ‘ 𝐺 ) ) ) → ( 𝑡 ( +g𝐺 ) 𝑠 ) = ( 𝑡 ( +g𝐻 ) 𝑠 ) )
16 15 eqeq1d ( ( 𝜑 ∧ ( 𝑠 ∈ ( Base ‘ 𝐺 ) ∧ 𝑡 ∈ ( Base ‘ 𝐺 ) ) ) → ( ( 𝑡 ( +g𝐺 ) 𝑠 ) = 𝑡 ↔ ( 𝑡 ( +g𝐻 ) 𝑠 ) = 𝑡 ) )
17 12 16 anbi12d ( ( 𝜑 ∧ ( 𝑠 ∈ ( Base ‘ 𝐺 ) ∧ 𝑡 ∈ ( Base ‘ 𝐺 ) ) ) → ( ( ( 𝑠 ( +g𝐺 ) 𝑡 ) = 𝑡 ∧ ( 𝑡 ( +g𝐺 ) 𝑠 ) = 𝑡 ) ↔ ( ( 𝑠 ( +g𝐻 ) 𝑡 ) = 𝑡 ∧ ( 𝑡 ( +g𝐻 ) 𝑠 ) = 𝑡 ) ) )
18 17 anassrs ( ( ( 𝜑𝑠 ∈ ( Base ‘ 𝐺 ) ) ∧ 𝑡 ∈ ( Base ‘ 𝐺 ) ) → ( ( ( 𝑠 ( +g𝐺 ) 𝑡 ) = 𝑡 ∧ ( 𝑡 ( +g𝐺 ) 𝑠 ) = 𝑡 ) ↔ ( ( 𝑠 ( +g𝐻 ) 𝑡 ) = 𝑡 ∧ ( 𝑡 ( +g𝐻 ) 𝑠 ) = 𝑡 ) ) )
19 11 18 raleqbidva ( ( 𝜑𝑠 ∈ ( Base ‘ 𝐺 ) ) → ( ∀ 𝑡 ∈ ( Base ‘ 𝐺 ) ( ( 𝑠 ( +g𝐺 ) 𝑡 ) = 𝑡 ∧ ( 𝑡 ( +g𝐺 ) 𝑠 ) = 𝑡 ) ↔ ∀ 𝑡 ∈ ( Base ‘ 𝐻 ) ( ( 𝑠 ( +g𝐻 ) 𝑡 ) = 𝑡 ∧ ( 𝑡 ( +g𝐻 ) 𝑠 ) = 𝑡 ) ) )
20 4 19 rabeqbidva ( 𝜑 → { 𝑠 ∈ ( Base ‘ 𝐺 ) ∣ ∀ 𝑡 ∈ ( Base ‘ 𝐺 ) ( ( 𝑠 ( +g𝐺 ) 𝑡 ) = 𝑡 ∧ ( 𝑡 ( +g𝐺 ) 𝑠 ) = 𝑡 ) } = { 𝑠 ∈ ( Base ‘ 𝐻 ) ∣ ∀ 𝑡 ∈ ( Base ‘ 𝐻 ) ( ( 𝑠 ( +g𝐻 ) 𝑡 ) = 𝑡 ∧ ( 𝑡 ( +g𝐻 ) 𝑠 ) = 𝑡 ) } )
21 20 sseq2d ( 𝜑 → ( ran 𝐹 ⊆ { 𝑠 ∈ ( Base ‘ 𝐺 ) ∣ ∀ 𝑡 ∈ ( Base ‘ 𝐺 ) ( ( 𝑠 ( +g𝐺 ) 𝑡 ) = 𝑡 ∧ ( 𝑡 ( +g𝐺 ) 𝑠 ) = 𝑡 ) } ↔ ran 𝐹 ⊆ { 𝑠 ∈ ( Base ‘ 𝐻 ) ∣ ∀ 𝑡 ∈ ( Base ‘ 𝐻 ) ( ( 𝑠 ( +g𝐻 ) 𝑡 ) = 𝑡 ∧ ( 𝑡 ( +g𝐻 ) 𝑠 ) = 𝑡 ) } ) )
22 eqidd ( 𝜑 → ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) )
23 22 4 6 grpidpropd ( 𝜑 → ( 0g𝐺 ) = ( 0g𝐻 ) )
24 simprl ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ𝑚 ) ∧ dom 𝐹 = ( 𝑚 ... 𝑛 ) ) ) → 𝑛 ∈ ( ℤ𝑚 ) )
25 8 ad2antrr ( ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ𝑚 ) ∧ dom 𝐹 = ( 𝑚 ... 𝑛 ) ) ) ∧ 𝑠 ∈ ( 𝑚 ... 𝑛 ) ) → ran 𝐹 ⊆ ( Base ‘ 𝐺 ) )
26 7 ad2antrr ( ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ𝑚 ) ∧ dom 𝐹 = ( 𝑚 ... 𝑛 ) ) ) ∧ 𝑠 ∈ ( 𝑚 ... 𝑛 ) ) → Fun 𝐹 )
27 simpr ( ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ𝑚 ) ∧ dom 𝐹 = ( 𝑚 ... 𝑛 ) ) ) ∧ 𝑠 ∈ ( 𝑚 ... 𝑛 ) ) → 𝑠 ∈ ( 𝑚 ... 𝑛 ) )
28 simplrr ( ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ𝑚 ) ∧ dom 𝐹 = ( 𝑚 ... 𝑛 ) ) ) ∧ 𝑠 ∈ ( 𝑚 ... 𝑛 ) ) → dom 𝐹 = ( 𝑚 ... 𝑛 ) )
29 27 28 eleqtrrd ( ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ𝑚 ) ∧ dom 𝐹 = ( 𝑚 ... 𝑛 ) ) ) ∧ 𝑠 ∈ ( 𝑚 ... 𝑛 ) ) → 𝑠 ∈ dom 𝐹 )
30 fvelrn ( ( Fun 𝐹𝑠 ∈ dom 𝐹 ) → ( 𝐹𝑠 ) ∈ ran 𝐹 )
31 26 29 30 syl2anc ( ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ𝑚 ) ∧ dom 𝐹 = ( 𝑚 ... 𝑛 ) ) ) ∧ 𝑠 ∈ ( 𝑚 ... 𝑛 ) ) → ( 𝐹𝑠 ) ∈ ran 𝐹 )
32 25 31 sseldd ( ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ𝑚 ) ∧ dom 𝐹 = ( 𝑚 ... 𝑛 ) ) ) ∧ 𝑠 ∈ ( 𝑚 ... 𝑛 ) ) → ( 𝐹𝑠 ) ∈ ( Base ‘ 𝐺 ) )
33 5 adantlr ( ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ𝑚 ) ∧ dom 𝐹 = ( 𝑚 ... 𝑛 ) ) ) ∧ ( 𝑠 ∈ ( Base ‘ 𝐺 ) ∧ 𝑡 ∈ ( Base ‘ 𝐺 ) ) ) → ( 𝑠 ( +g𝐺 ) 𝑡 ) ∈ ( Base ‘ 𝐺 ) )
34 6 adantlr ( ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ𝑚 ) ∧ dom 𝐹 = ( 𝑚 ... 𝑛 ) ) ) ∧ ( 𝑠 ∈ ( Base ‘ 𝐺 ) ∧ 𝑡 ∈ ( Base ‘ 𝐺 ) ) ) → ( 𝑠 ( +g𝐺 ) 𝑡 ) = ( 𝑠 ( +g𝐻 ) 𝑡 ) )
35 24 32 33 34 seqfeq4 ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ𝑚 ) ∧ dom 𝐹 = ( 𝑚 ... 𝑛 ) ) ) → ( seq 𝑚 ( ( +g𝐺 ) , 𝐹 ) ‘ 𝑛 ) = ( seq 𝑚 ( ( +g𝐻 ) , 𝐹 ) ‘ 𝑛 ) )
36 35 eqeq2d ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ𝑚 ) ∧ dom 𝐹 = ( 𝑚 ... 𝑛 ) ) ) → ( 𝑥 = ( seq 𝑚 ( ( +g𝐺 ) , 𝐹 ) ‘ 𝑛 ) ↔ 𝑥 = ( seq 𝑚 ( ( +g𝐻 ) , 𝐹 ) ‘ 𝑛 ) ) )
37 36 anassrs ( ( ( 𝜑𝑛 ∈ ( ℤ𝑚 ) ) ∧ dom 𝐹 = ( 𝑚 ... 𝑛 ) ) → ( 𝑥 = ( seq 𝑚 ( ( +g𝐺 ) , 𝐹 ) ‘ 𝑛 ) ↔ 𝑥 = ( seq 𝑚 ( ( +g𝐻 ) , 𝐹 ) ‘ 𝑛 ) ) )
38 37 pm5.32da ( ( 𝜑𝑛 ∈ ( ℤ𝑚 ) ) → ( ( dom 𝐹 = ( 𝑚 ... 𝑛 ) ∧ 𝑥 = ( seq 𝑚 ( ( +g𝐺 ) , 𝐹 ) ‘ 𝑛 ) ) ↔ ( dom 𝐹 = ( 𝑚 ... 𝑛 ) ∧ 𝑥 = ( seq 𝑚 ( ( +g𝐻 ) , 𝐹 ) ‘ 𝑛 ) ) ) )
39 38 rexbidva ( 𝜑 → ( ∃ 𝑛 ∈ ( ℤ𝑚 ) ( dom 𝐹 = ( 𝑚 ... 𝑛 ) ∧ 𝑥 = ( seq 𝑚 ( ( +g𝐺 ) , 𝐹 ) ‘ 𝑛 ) ) ↔ ∃ 𝑛 ∈ ( ℤ𝑚 ) ( dom 𝐹 = ( 𝑚 ... 𝑛 ) ∧ 𝑥 = ( seq 𝑚 ( ( +g𝐻 ) , 𝐹 ) ‘ 𝑛 ) ) ) )
40 39 exbidv ( 𝜑 → ( ∃ 𝑚𝑛 ∈ ( ℤ𝑚 ) ( dom 𝐹 = ( 𝑚 ... 𝑛 ) ∧ 𝑥 = ( seq 𝑚 ( ( +g𝐺 ) , 𝐹 ) ‘ 𝑛 ) ) ↔ ∃ 𝑚𝑛 ∈ ( ℤ𝑚 ) ( dom 𝐹 = ( 𝑚 ... 𝑛 ) ∧ 𝑥 = ( seq 𝑚 ( ( +g𝐻 ) , 𝐹 ) ‘ 𝑛 ) ) ) )
41 40 iotabidv ( 𝜑 → ( ℩ 𝑥𝑚𝑛 ∈ ( ℤ𝑚 ) ( dom 𝐹 = ( 𝑚 ... 𝑛 ) ∧ 𝑥 = ( seq 𝑚 ( ( +g𝐺 ) , 𝐹 ) ‘ 𝑛 ) ) ) = ( ℩ 𝑥𝑚𝑛 ∈ ( ℤ𝑚 ) ( dom 𝐹 = ( 𝑚 ... 𝑛 ) ∧ 𝑥 = ( seq 𝑚 ( ( +g𝐻 ) , 𝐹 ) ‘ 𝑛 ) ) ) )
42 20 difeq2d ( 𝜑 → ( V ∖ { 𝑠 ∈ ( Base ‘ 𝐺 ) ∣ ∀ 𝑡 ∈ ( Base ‘ 𝐺 ) ( ( 𝑠 ( +g𝐺 ) 𝑡 ) = 𝑡 ∧ ( 𝑡 ( +g𝐺 ) 𝑠 ) = 𝑡 ) } ) = ( V ∖ { 𝑠 ∈ ( Base ‘ 𝐻 ) ∣ ∀ 𝑡 ∈ ( Base ‘ 𝐻 ) ( ( 𝑠 ( +g𝐻 ) 𝑡 ) = 𝑡 ∧ ( 𝑡 ( +g𝐻 ) 𝑠 ) = 𝑡 ) } ) )
43 42 imaeq2d ( 𝜑 → ( 𝐹 “ ( V ∖ { 𝑠 ∈ ( Base ‘ 𝐺 ) ∣ ∀ 𝑡 ∈ ( Base ‘ 𝐺 ) ( ( 𝑠 ( +g𝐺 ) 𝑡 ) = 𝑡 ∧ ( 𝑡 ( +g𝐺 ) 𝑠 ) = 𝑡 ) } ) ) = ( 𝐹 “ ( V ∖ { 𝑠 ∈ ( Base ‘ 𝐻 ) ∣ ∀ 𝑡 ∈ ( Base ‘ 𝐻 ) ( ( 𝑠 ( +g𝐻 ) 𝑡 ) = 𝑡 ∧ ( 𝑡 ( +g𝐻 ) 𝑠 ) = 𝑡 ) } ) ) )
44 43 9 10 3eqtr4g ( 𝜑𝐴 = 𝐵 )
45 44 fveq2d ( 𝜑 → ( ♯ ‘ 𝐴 ) = ( ♯ ‘ 𝐵 ) )
46 45 fveq2d ( 𝜑 → ( seq 1 ( ( +g𝐺 ) , ( 𝐹𝑓 ) ) ‘ ( ♯ ‘ 𝐴 ) ) = ( seq 1 ( ( +g𝐺 ) , ( 𝐹𝑓 ) ) ‘ ( ♯ ‘ 𝐵 ) ) )
47 46 adantr ( ( 𝜑𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto𝐴 ) → ( seq 1 ( ( +g𝐺 ) , ( 𝐹𝑓 ) ) ‘ ( ♯ ‘ 𝐴 ) ) = ( seq 1 ( ( +g𝐺 ) , ( 𝐹𝑓 ) ) ‘ ( ♯ ‘ 𝐵 ) ) )
48 simpr ( ( ( 𝜑𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto𝐴 ) ∧ ( ♯ ‘ 𝐵 ) ∈ ( ℤ ‘ 1 ) ) → ( ♯ ‘ 𝐵 ) ∈ ( ℤ ‘ 1 ) )
49 8 ad3antrrr ( ( ( ( 𝜑𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto𝐴 ) ∧ ( ♯ ‘ 𝐵 ) ∈ ( ℤ ‘ 1 ) ) ∧ 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ) → ran 𝐹 ⊆ ( Base ‘ 𝐺 ) )
50 f1ofun ( 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto𝐴 → Fun 𝑓 )
51 50 ad3antlr ( ( ( ( 𝜑𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto𝐴 ) ∧ ( ♯ ‘ 𝐵 ) ∈ ( ℤ ‘ 1 ) ) ∧ 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ) → Fun 𝑓 )
52 simpr ( ( ( ( 𝜑𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto𝐴 ) ∧ ( ♯ ‘ 𝐵 ) ∈ ( ℤ ‘ 1 ) ) ∧ 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ) → 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) )
53 f1odm ( 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto𝐴 → dom 𝑓 = ( 1 ... ( ♯ ‘ 𝐴 ) ) )
54 53 ad3antlr ( ( ( ( 𝜑𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto𝐴 ) ∧ ( ♯ ‘ 𝐵 ) ∈ ( ℤ ‘ 1 ) ) ∧ 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ) → dom 𝑓 = ( 1 ... ( ♯ ‘ 𝐴 ) ) )
55 45 oveq2d ( 𝜑 → ( 1 ... ( ♯ ‘ 𝐴 ) ) = ( 1 ... ( ♯ ‘ 𝐵 ) ) )
56 55 ad3antrrr ( ( ( ( 𝜑𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto𝐴 ) ∧ ( ♯ ‘ 𝐵 ) ∈ ( ℤ ‘ 1 ) ) ∧ 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ) → ( 1 ... ( ♯ ‘ 𝐴 ) ) = ( 1 ... ( ♯ ‘ 𝐵 ) ) )
57 54 56 eqtrd ( ( ( ( 𝜑𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto𝐴 ) ∧ ( ♯ ‘ 𝐵 ) ∈ ( ℤ ‘ 1 ) ) ∧ 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ) → dom 𝑓 = ( 1 ... ( ♯ ‘ 𝐵 ) ) )
58 52 57 eleqtrrd ( ( ( ( 𝜑𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto𝐴 ) ∧ ( ♯ ‘ 𝐵 ) ∈ ( ℤ ‘ 1 ) ) ∧ 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ) → 𝑎 ∈ dom 𝑓 )
59 fvco ( ( Fun 𝑓𝑎 ∈ dom 𝑓 ) → ( ( 𝐹𝑓 ) ‘ 𝑎 ) = ( 𝐹 ‘ ( 𝑓𝑎 ) ) )
60 51 58 59 syl2anc ( ( ( ( 𝜑𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto𝐴 ) ∧ ( ♯ ‘ 𝐵 ) ∈ ( ℤ ‘ 1 ) ) ∧ 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ) → ( ( 𝐹𝑓 ) ‘ 𝑎 ) = ( 𝐹 ‘ ( 𝑓𝑎 ) ) )
61 7 ad3antrrr ( ( ( ( 𝜑𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto𝐴 ) ∧ ( ♯ ‘ 𝐵 ) ∈ ( ℤ ‘ 1 ) ) ∧ 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ) → Fun 𝐹 )
62 difpreima ( Fun 𝐹 → ( 𝐹 “ ( V ∖ { 𝑠 ∈ ( Base ‘ 𝐺 ) ∣ ∀ 𝑡 ∈ ( Base ‘ 𝐺 ) ( ( 𝑠 ( +g𝐺 ) 𝑡 ) = 𝑡 ∧ ( 𝑡 ( +g𝐺 ) 𝑠 ) = 𝑡 ) } ) ) = ( ( 𝐹 “ V ) ∖ ( 𝐹 “ { 𝑠 ∈ ( Base ‘ 𝐺 ) ∣ ∀ 𝑡 ∈ ( Base ‘ 𝐺 ) ( ( 𝑠 ( +g𝐺 ) 𝑡 ) = 𝑡 ∧ ( 𝑡 ( +g𝐺 ) 𝑠 ) = 𝑡 ) } ) ) )
63 7 62 syl ( 𝜑 → ( 𝐹 “ ( V ∖ { 𝑠 ∈ ( Base ‘ 𝐺 ) ∣ ∀ 𝑡 ∈ ( Base ‘ 𝐺 ) ( ( 𝑠 ( +g𝐺 ) 𝑡 ) = 𝑡 ∧ ( 𝑡 ( +g𝐺 ) 𝑠 ) = 𝑡 ) } ) ) = ( ( 𝐹 “ V ) ∖ ( 𝐹 “ { 𝑠 ∈ ( Base ‘ 𝐺 ) ∣ ∀ 𝑡 ∈ ( Base ‘ 𝐺 ) ( ( 𝑠 ( +g𝐺 ) 𝑡 ) = 𝑡 ∧ ( 𝑡 ( +g𝐺 ) 𝑠 ) = 𝑡 ) } ) ) )
64 9 63 syl5eq ( 𝜑𝐴 = ( ( 𝐹 “ V ) ∖ ( 𝐹 “ { 𝑠 ∈ ( Base ‘ 𝐺 ) ∣ ∀ 𝑡 ∈ ( Base ‘ 𝐺 ) ( ( 𝑠 ( +g𝐺 ) 𝑡 ) = 𝑡 ∧ ( 𝑡 ( +g𝐺 ) 𝑠 ) = 𝑡 ) } ) ) )
65 difss ( ( 𝐹 “ V ) ∖ ( 𝐹 “ { 𝑠 ∈ ( Base ‘ 𝐺 ) ∣ ∀ 𝑡 ∈ ( Base ‘ 𝐺 ) ( ( 𝑠 ( +g𝐺 ) 𝑡 ) = 𝑡 ∧ ( 𝑡 ( +g𝐺 ) 𝑠 ) = 𝑡 ) } ) ) ⊆ ( 𝐹 “ V )
66 64 65 eqsstrdi ( 𝜑𝐴 ⊆ ( 𝐹 “ V ) )
67 dfdm4 dom 𝐹 = ran 𝐹
68 dfrn4 ran 𝐹 = ( 𝐹 “ V )
69 67 68 eqtri dom 𝐹 = ( 𝐹 “ V )
70 66 69 sseqtrrdi ( 𝜑𝐴 ⊆ dom 𝐹 )
71 70 ad3antrrr ( ( ( ( 𝜑𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto𝐴 ) ∧ ( ♯ ‘ 𝐵 ) ∈ ( ℤ ‘ 1 ) ) ∧ 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ) → 𝐴 ⊆ dom 𝐹 )
72 f1of ( 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto𝐴𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) ⟶ 𝐴 )
73 72 ad3antlr ( ( ( ( 𝜑𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto𝐴 ) ∧ ( ♯ ‘ 𝐵 ) ∈ ( ℤ ‘ 1 ) ) ∧ 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ) → 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) ⟶ 𝐴 )
74 52 56 eleqtrrd ( ( ( ( 𝜑𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto𝐴 ) ∧ ( ♯ ‘ 𝐵 ) ∈ ( ℤ ‘ 1 ) ) ∧ 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ) → 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) )
75 73 74 ffvelrnd ( ( ( ( 𝜑𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto𝐴 ) ∧ ( ♯ ‘ 𝐵 ) ∈ ( ℤ ‘ 1 ) ) ∧ 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ) → ( 𝑓𝑎 ) ∈ 𝐴 )
76 71 75 sseldd ( ( ( ( 𝜑𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto𝐴 ) ∧ ( ♯ ‘ 𝐵 ) ∈ ( ℤ ‘ 1 ) ) ∧ 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ) → ( 𝑓𝑎 ) ∈ dom 𝐹 )
77 fvelrn ( ( Fun 𝐹 ∧ ( 𝑓𝑎 ) ∈ dom 𝐹 ) → ( 𝐹 ‘ ( 𝑓𝑎 ) ) ∈ ran 𝐹 )
78 61 76 77 syl2anc ( ( ( ( 𝜑𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto𝐴 ) ∧ ( ♯ ‘ 𝐵 ) ∈ ( ℤ ‘ 1 ) ) ∧ 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ) → ( 𝐹 ‘ ( 𝑓𝑎 ) ) ∈ ran 𝐹 )
79 60 78 eqeltrd ( ( ( ( 𝜑𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto𝐴 ) ∧ ( ♯ ‘ 𝐵 ) ∈ ( ℤ ‘ 1 ) ) ∧ 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ) → ( ( 𝐹𝑓 ) ‘ 𝑎 ) ∈ ran 𝐹 )
80 49 79 sseldd ( ( ( ( 𝜑𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto𝐴 ) ∧ ( ♯ ‘ 𝐵 ) ∈ ( ℤ ‘ 1 ) ) ∧ 𝑎 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ) → ( ( 𝐹𝑓 ) ‘ 𝑎 ) ∈ ( Base ‘ 𝐺 ) )
81 5 caovclg ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝐺 ) ∧ 𝑏 ∈ ( Base ‘ 𝐺 ) ) ) → ( 𝑎 ( +g𝐺 ) 𝑏 ) ∈ ( Base ‘ 𝐺 ) )
82 81 ad4ant14 ( ( ( ( 𝜑𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto𝐴 ) ∧ ( ♯ ‘ 𝐵 ) ∈ ( ℤ ‘ 1 ) ) ∧ ( 𝑎 ∈ ( Base ‘ 𝐺 ) ∧ 𝑏 ∈ ( Base ‘ 𝐺 ) ) ) → ( 𝑎 ( +g𝐺 ) 𝑏 ) ∈ ( Base ‘ 𝐺 ) )
83 13 ad4ant14 ( ( ( ( 𝜑𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto𝐴 ) ∧ ( ♯ ‘ 𝐵 ) ∈ ( ℤ ‘ 1 ) ) ∧ ( 𝑎 ∈ ( Base ‘ 𝐺 ) ∧ 𝑏 ∈ ( Base ‘ 𝐺 ) ) ) → ( 𝑎 ( +g𝐺 ) 𝑏 ) = ( 𝑎 ( +g𝐻 ) 𝑏 ) )
84 48 80 82 83 seqfeq4 ( ( ( 𝜑𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto𝐴 ) ∧ ( ♯ ‘ 𝐵 ) ∈ ( ℤ ‘ 1 ) ) → ( seq 1 ( ( +g𝐺 ) , ( 𝐹𝑓 ) ) ‘ ( ♯ ‘ 𝐵 ) ) = ( seq 1 ( ( +g𝐻 ) , ( 𝐹𝑓 ) ) ‘ ( ♯ ‘ 𝐵 ) ) )
85 simpr ( ( 𝜑 ∧ ¬ ( ♯ ‘ 𝐵 ) ∈ ( ℤ ‘ 1 ) ) → ¬ ( ♯ ‘ 𝐵 ) ∈ ( ℤ ‘ 1 ) )
86 1z 1 ∈ ℤ
87 seqfn ( 1 ∈ ℤ → seq 1 ( ( +g𝐺 ) , ( 𝐹𝑓 ) ) Fn ( ℤ ‘ 1 ) )
88 fndm ( seq 1 ( ( +g𝐺 ) , ( 𝐹𝑓 ) ) Fn ( ℤ ‘ 1 ) → dom seq 1 ( ( +g𝐺 ) , ( 𝐹𝑓 ) ) = ( ℤ ‘ 1 ) )
89 86 87 88 mp2b dom seq 1 ( ( +g𝐺 ) , ( 𝐹𝑓 ) ) = ( ℤ ‘ 1 )
90 89 eleq2i ( ( ♯ ‘ 𝐵 ) ∈ dom seq 1 ( ( +g𝐺 ) , ( 𝐹𝑓 ) ) ↔ ( ♯ ‘ 𝐵 ) ∈ ( ℤ ‘ 1 ) )
91 85 90 sylnibr ( ( 𝜑 ∧ ¬ ( ♯ ‘ 𝐵 ) ∈ ( ℤ ‘ 1 ) ) → ¬ ( ♯ ‘ 𝐵 ) ∈ dom seq 1 ( ( +g𝐺 ) , ( 𝐹𝑓 ) ) )
92 ndmfv ( ¬ ( ♯ ‘ 𝐵 ) ∈ dom seq 1 ( ( +g𝐺 ) , ( 𝐹𝑓 ) ) → ( seq 1 ( ( +g𝐺 ) , ( 𝐹𝑓 ) ) ‘ ( ♯ ‘ 𝐵 ) ) = ∅ )
93 91 92 syl ( ( 𝜑 ∧ ¬ ( ♯ ‘ 𝐵 ) ∈ ( ℤ ‘ 1 ) ) → ( seq 1 ( ( +g𝐺 ) , ( 𝐹𝑓 ) ) ‘ ( ♯ ‘ 𝐵 ) ) = ∅ )
94 seqfn ( 1 ∈ ℤ → seq 1 ( ( +g𝐻 ) , ( 𝐹𝑓 ) ) Fn ( ℤ ‘ 1 ) )
95 fndm ( seq 1 ( ( +g𝐻 ) , ( 𝐹𝑓 ) ) Fn ( ℤ ‘ 1 ) → dom seq 1 ( ( +g𝐻 ) , ( 𝐹𝑓 ) ) = ( ℤ ‘ 1 ) )
96 86 94 95 mp2b dom seq 1 ( ( +g𝐻 ) , ( 𝐹𝑓 ) ) = ( ℤ ‘ 1 )
97 96 eleq2i ( ( ♯ ‘ 𝐵 ) ∈ dom seq 1 ( ( +g𝐻 ) , ( 𝐹𝑓 ) ) ↔ ( ♯ ‘ 𝐵 ) ∈ ( ℤ ‘ 1 ) )
98 85 97 sylnibr ( ( 𝜑 ∧ ¬ ( ♯ ‘ 𝐵 ) ∈ ( ℤ ‘ 1 ) ) → ¬ ( ♯ ‘ 𝐵 ) ∈ dom seq 1 ( ( +g𝐻 ) , ( 𝐹𝑓 ) ) )
99 ndmfv ( ¬ ( ♯ ‘ 𝐵 ) ∈ dom seq 1 ( ( +g𝐻 ) , ( 𝐹𝑓 ) ) → ( seq 1 ( ( +g𝐻 ) , ( 𝐹𝑓 ) ) ‘ ( ♯ ‘ 𝐵 ) ) = ∅ )
100 98 99 syl ( ( 𝜑 ∧ ¬ ( ♯ ‘ 𝐵 ) ∈ ( ℤ ‘ 1 ) ) → ( seq 1 ( ( +g𝐻 ) , ( 𝐹𝑓 ) ) ‘ ( ♯ ‘ 𝐵 ) ) = ∅ )
101 93 100 eqtr4d ( ( 𝜑 ∧ ¬ ( ♯ ‘ 𝐵 ) ∈ ( ℤ ‘ 1 ) ) → ( seq 1 ( ( +g𝐺 ) , ( 𝐹𝑓 ) ) ‘ ( ♯ ‘ 𝐵 ) ) = ( seq 1 ( ( +g𝐻 ) , ( 𝐹𝑓 ) ) ‘ ( ♯ ‘ 𝐵 ) ) )
102 101 adantlr ( ( ( 𝜑𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto𝐴 ) ∧ ¬ ( ♯ ‘ 𝐵 ) ∈ ( ℤ ‘ 1 ) ) → ( seq 1 ( ( +g𝐺 ) , ( 𝐹𝑓 ) ) ‘ ( ♯ ‘ 𝐵 ) ) = ( seq 1 ( ( +g𝐻 ) , ( 𝐹𝑓 ) ) ‘ ( ♯ ‘ 𝐵 ) ) )
103 84 102 pm2.61dan ( ( 𝜑𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto𝐴 ) → ( seq 1 ( ( +g𝐺 ) , ( 𝐹𝑓 ) ) ‘ ( ♯ ‘ 𝐵 ) ) = ( seq 1 ( ( +g𝐻 ) , ( 𝐹𝑓 ) ) ‘ ( ♯ ‘ 𝐵 ) ) )
104 47 103 eqtrd ( ( 𝜑𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto𝐴 ) → ( seq 1 ( ( +g𝐺 ) , ( 𝐹𝑓 ) ) ‘ ( ♯ ‘ 𝐴 ) ) = ( seq 1 ( ( +g𝐻 ) , ( 𝐹𝑓 ) ) ‘ ( ♯ ‘ 𝐵 ) ) )
105 104 eqeq2d ( ( 𝜑𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto𝐴 ) → ( 𝑥 = ( seq 1 ( ( +g𝐺 ) , ( 𝐹𝑓 ) ) ‘ ( ♯ ‘ 𝐴 ) ) ↔ 𝑥 = ( seq 1 ( ( +g𝐻 ) , ( 𝐹𝑓 ) ) ‘ ( ♯ ‘ 𝐵 ) ) ) )
106 105 pm5.32da ( 𝜑 → ( ( 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto𝐴𝑥 = ( seq 1 ( ( +g𝐺 ) , ( 𝐹𝑓 ) ) ‘ ( ♯ ‘ 𝐴 ) ) ) ↔ ( 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto𝐴𝑥 = ( seq 1 ( ( +g𝐻 ) , ( 𝐹𝑓 ) ) ‘ ( ♯ ‘ 𝐵 ) ) ) ) )
107 55 f1oeq2d ( 𝜑 → ( 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto𝐴𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto𝐴 ) )
108 44 f1oeq3d ( 𝜑 → ( 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto𝐴𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto𝐵 ) )
109 107 108 bitrd ( 𝜑 → ( 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto𝐴𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto𝐵 ) )
110 109 anbi1d ( 𝜑 → ( ( 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto𝐴𝑥 = ( seq 1 ( ( +g𝐻 ) , ( 𝐹𝑓 ) ) ‘ ( ♯ ‘ 𝐵 ) ) ) ↔ ( 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto𝐵𝑥 = ( seq 1 ( ( +g𝐻 ) , ( 𝐹𝑓 ) ) ‘ ( ♯ ‘ 𝐵 ) ) ) ) )
111 106 110 bitrd ( 𝜑 → ( ( 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto𝐴𝑥 = ( seq 1 ( ( +g𝐺 ) , ( 𝐹𝑓 ) ) ‘ ( ♯ ‘ 𝐴 ) ) ) ↔ ( 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto𝐵𝑥 = ( seq 1 ( ( +g𝐻 ) , ( 𝐹𝑓 ) ) ‘ ( ♯ ‘ 𝐵 ) ) ) ) )
112 111 exbidv ( 𝜑 → ( ∃ 𝑓 ( 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto𝐴𝑥 = ( seq 1 ( ( +g𝐺 ) , ( 𝐹𝑓 ) ) ‘ ( ♯ ‘ 𝐴 ) ) ) ↔ ∃ 𝑓 ( 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto𝐵𝑥 = ( seq 1 ( ( +g𝐻 ) , ( 𝐹𝑓 ) ) ‘ ( ♯ ‘ 𝐵 ) ) ) ) )
113 112 iotabidv ( 𝜑 → ( ℩ 𝑥𝑓 ( 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto𝐴𝑥 = ( seq 1 ( ( +g𝐺 ) , ( 𝐹𝑓 ) ) ‘ ( ♯ ‘ 𝐴 ) ) ) ) = ( ℩ 𝑥𝑓 ( 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto𝐵𝑥 = ( seq 1 ( ( +g𝐻 ) , ( 𝐹𝑓 ) ) ‘ ( ♯ ‘ 𝐵 ) ) ) ) )
114 41 113 ifeq12d ( 𝜑 → if ( dom 𝐹 ∈ ran ... , ( ℩ 𝑥𝑚𝑛 ∈ ( ℤ𝑚 ) ( dom 𝐹 = ( 𝑚 ... 𝑛 ) ∧ 𝑥 = ( seq 𝑚 ( ( +g𝐺 ) , 𝐹 ) ‘ 𝑛 ) ) ) , ( ℩ 𝑥𝑓 ( 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto𝐴𝑥 = ( seq 1 ( ( +g𝐺 ) , ( 𝐹𝑓 ) ) ‘ ( ♯ ‘ 𝐴 ) ) ) ) ) = if ( dom 𝐹 ∈ ran ... , ( ℩ 𝑥𝑚𝑛 ∈ ( ℤ𝑚 ) ( dom 𝐹 = ( 𝑚 ... 𝑛 ) ∧ 𝑥 = ( seq 𝑚 ( ( +g𝐻 ) , 𝐹 ) ‘ 𝑛 ) ) ) , ( ℩ 𝑥𝑓 ( 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto𝐵𝑥 = ( seq 1 ( ( +g𝐻 ) , ( 𝐹𝑓 ) ) ‘ ( ♯ ‘ 𝐵 ) ) ) ) ) )
115 21 23 114 ifbieq12d ( 𝜑 → if ( ran 𝐹 ⊆ { 𝑠 ∈ ( Base ‘ 𝐺 ) ∣ ∀ 𝑡 ∈ ( Base ‘ 𝐺 ) ( ( 𝑠 ( +g𝐺 ) 𝑡 ) = 𝑡 ∧ ( 𝑡 ( +g𝐺 ) 𝑠 ) = 𝑡 ) } , ( 0g𝐺 ) , if ( dom 𝐹 ∈ ran ... , ( ℩ 𝑥𝑚𝑛 ∈ ( ℤ𝑚 ) ( dom 𝐹 = ( 𝑚 ... 𝑛 ) ∧ 𝑥 = ( seq 𝑚 ( ( +g𝐺 ) , 𝐹 ) ‘ 𝑛 ) ) ) , ( ℩ 𝑥𝑓 ( 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto𝐴𝑥 = ( seq 1 ( ( +g𝐺 ) , ( 𝐹𝑓 ) ) ‘ ( ♯ ‘ 𝐴 ) ) ) ) ) ) = if ( ran 𝐹 ⊆ { 𝑠 ∈ ( Base ‘ 𝐻 ) ∣ ∀ 𝑡 ∈ ( Base ‘ 𝐻 ) ( ( 𝑠 ( +g𝐻 ) 𝑡 ) = 𝑡 ∧ ( 𝑡 ( +g𝐻 ) 𝑠 ) = 𝑡 ) } , ( 0g𝐻 ) , if ( dom 𝐹 ∈ ran ... , ( ℩ 𝑥𝑚𝑛 ∈ ( ℤ𝑚 ) ( dom 𝐹 = ( 𝑚 ... 𝑛 ) ∧ 𝑥 = ( seq 𝑚 ( ( +g𝐻 ) , 𝐹 ) ‘ 𝑛 ) ) ) , ( ℩ 𝑥𝑓 ( 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto𝐵𝑥 = ( seq 1 ( ( +g𝐻 ) , ( 𝐹𝑓 ) ) ‘ ( ♯ ‘ 𝐵 ) ) ) ) ) ) )
116 eqid ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 )
117 eqid ( 0g𝐺 ) = ( 0g𝐺 )
118 eqid ( +g𝐺 ) = ( +g𝐺 )
119 eqid { 𝑠 ∈ ( Base ‘ 𝐺 ) ∣ ∀ 𝑡 ∈ ( Base ‘ 𝐺 ) ( ( 𝑠 ( +g𝐺 ) 𝑡 ) = 𝑡 ∧ ( 𝑡 ( +g𝐺 ) 𝑠 ) = 𝑡 ) } = { 𝑠 ∈ ( Base ‘ 𝐺 ) ∣ ∀ 𝑡 ∈ ( Base ‘ 𝐺 ) ( ( 𝑠 ( +g𝐺 ) 𝑡 ) = 𝑡 ∧ ( 𝑡 ( +g𝐺 ) 𝑠 ) = 𝑡 ) }
120 9 a1i ( 𝜑𝐴 = ( 𝐹 “ ( V ∖ { 𝑠 ∈ ( Base ‘ 𝐺 ) ∣ ∀ 𝑡 ∈ ( Base ‘ 𝐺 ) ( ( 𝑠 ( +g𝐺 ) 𝑡 ) = 𝑡 ∧ ( 𝑡 ( +g𝐺 ) 𝑠 ) = 𝑡 ) } ) ) )
121 eqidd ( 𝜑 → dom 𝐹 = dom 𝐹 )
122 116 117 118 119 120 2 1 121 gsumvalx ( 𝜑 → ( 𝐺 Σg 𝐹 ) = if ( ran 𝐹 ⊆ { 𝑠 ∈ ( Base ‘ 𝐺 ) ∣ ∀ 𝑡 ∈ ( Base ‘ 𝐺 ) ( ( 𝑠 ( +g𝐺 ) 𝑡 ) = 𝑡 ∧ ( 𝑡 ( +g𝐺 ) 𝑠 ) = 𝑡 ) } , ( 0g𝐺 ) , if ( dom 𝐹 ∈ ran ... , ( ℩ 𝑥𝑚𝑛 ∈ ( ℤ𝑚 ) ( dom 𝐹 = ( 𝑚 ... 𝑛 ) ∧ 𝑥 = ( seq 𝑚 ( ( +g𝐺 ) , 𝐹 ) ‘ 𝑛 ) ) ) , ( ℩ 𝑥𝑓 ( 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto𝐴𝑥 = ( seq 1 ( ( +g𝐺 ) , ( 𝐹𝑓 ) ) ‘ ( ♯ ‘ 𝐴 ) ) ) ) ) ) )
123 eqid ( Base ‘ 𝐻 ) = ( Base ‘ 𝐻 )
124 eqid ( 0g𝐻 ) = ( 0g𝐻 )
125 eqid ( +g𝐻 ) = ( +g𝐻 )
126 eqid { 𝑠 ∈ ( Base ‘ 𝐻 ) ∣ ∀ 𝑡 ∈ ( Base ‘ 𝐻 ) ( ( 𝑠 ( +g𝐻 ) 𝑡 ) = 𝑡 ∧ ( 𝑡 ( +g𝐻 ) 𝑠 ) = 𝑡 ) } = { 𝑠 ∈ ( Base ‘ 𝐻 ) ∣ ∀ 𝑡 ∈ ( Base ‘ 𝐻 ) ( ( 𝑠 ( +g𝐻 ) 𝑡 ) = 𝑡 ∧ ( 𝑡 ( +g𝐻 ) 𝑠 ) = 𝑡 ) }
127 10 a1i ( 𝜑𝐵 = ( 𝐹 “ ( V ∖ { 𝑠 ∈ ( Base ‘ 𝐻 ) ∣ ∀ 𝑡 ∈ ( Base ‘ 𝐻 ) ( ( 𝑠 ( +g𝐻 ) 𝑡 ) = 𝑡 ∧ ( 𝑡 ( +g𝐻 ) 𝑠 ) = 𝑡 ) } ) ) )
128 123 124 125 126 127 3 1 121 gsumvalx ( 𝜑 → ( 𝐻 Σg 𝐹 ) = if ( ran 𝐹 ⊆ { 𝑠 ∈ ( Base ‘ 𝐻 ) ∣ ∀ 𝑡 ∈ ( Base ‘ 𝐻 ) ( ( 𝑠 ( +g𝐻 ) 𝑡 ) = 𝑡 ∧ ( 𝑡 ( +g𝐻 ) 𝑠 ) = 𝑡 ) } , ( 0g𝐻 ) , if ( dom 𝐹 ∈ ran ... , ( ℩ 𝑥𝑚𝑛 ∈ ( ℤ𝑚 ) ( dom 𝐹 = ( 𝑚 ... 𝑛 ) ∧ 𝑥 = ( seq 𝑚 ( ( +g𝐻 ) , 𝐹 ) ‘ 𝑛 ) ) ) , ( ℩ 𝑥𝑓 ( 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto𝐵𝑥 = ( seq 1 ( ( +g𝐻 ) , ( 𝐹𝑓 ) ) ‘ ( ♯ ‘ 𝐵 ) ) ) ) ) ) )
129 115 122 128 3eqtr4d ( 𝜑 → ( 𝐺 Σg 𝐹 ) = ( 𝐻 Σg 𝐹 ) )