| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gsumpropd2.f |
|- ( ph -> F e. V ) |
| 2 |
|
gsumpropd2.g |
|- ( ph -> G e. W ) |
| 3 |
|
gsumpropd2.h |
|- ( ph -> H e. X ) |
| 4 |
|
gsumpropd2.b |
|- ( ph -> ( Base ` G ) = ( Base ` H ) ) |
| 5 |
|
gsumpropd2.c |
|- ( ( ph /\ ( s e. ( Base ` G ) /\ t e. ( Base ` G ) ) ) -> ( s ( +g ` G ) t ) e. ( Base ` G ) ) |
| 6 |
|
gsumpropd2.e |
|- ( ( ph /\ ( s e. ( Base ` G ) /\ t e. ( Base ` G ) ) ) -> ( s ( +g ` G ) t ) = ( s ( +g ` H ) t ) ) |
| 7 |
|
gsumpropd2.n |
|- ( ph -> Fun F ) |
| 8 |
|
gsumpropd2.r |
|- ( ph -> ran F C_ ( Base ` G ) ) |
| 9 |
|
gsumprop2dlem.1 |
|- A = ( `' F " ( _V \ { s e. ( Base ` G ) | A. t e. ( Base ` G ) ( ( s ( +g ` G ) t ) = t /\ ( t ( +g ` G ) s ) = t ) } ) ) |
| 10 |
|
gsumprop2dlem.2 |
|- B = ( `' F " ( _V \ { s e. ( Base ` H ) | A. t e. ( Base ` H ) ( ( s ( +g ` H ) t ) = t /\ ( t ( +g ` H ) s ) = t ) } ) ) |
| 11 |
4
|
adantr |
|- ( ( ph /\ s e. ( Base ` G ) ) -> ( Base ` G ) = ( Base ` H ) ) |
| 12 |
6
|
eqeq1d |
|- ( ( ph /\ ( s e. ( Base ` G ) /\ t e. ( Base ` G ) ) ) -> ( ( s ( +g ` G ) t ) = t <-> ( s ( +g ` H ) t ) = t ) ) |
| 13 |
6
|
oveqrspc2v |
|- ( ( ph /\ ( a e. ( Base ` G ) /\ b e. ( Base ` G ) ) ) -> ( a ( +g ` G ) b ) = ( a ( +g ` H ) b ) ) |
| 14 |
13
|
oveqrspc2v |
|- ( ( ph /\ ( t e. ( Base ` G ) /\ s e. ( Base ` G ) ) ) -> ( t ( +g ` G ) s ) = ( t ( +g ` H ) s ) ) |
| 15 |
14
|
ancom2s |
|- ( ( ph /\ ( s e. ( Base ` G ) /\ t e. ( Base ` G ) ) ) -> ( t ( +g ` G ) s ) = ( t ( +g ` H ) s ) ) |
| 16 |
15
|
eqeq1d |
|- ( ( ph /\ ( s e. ( Base ` G ) /\ t e. ( Base ` G ) ) ) -> ( ( t ( +g ` G ) s ) = t <-> ( t ( +g ` H ) s ) = t ) ) |
| 17 |
12 16
|
anbi12d |
|- ( ( ph /\ ( s e. ( Base ` G ) /\ t e. ( Base ` G ) ) ) -> ( ( ( s ( +g ` G ) t ) = t /\ ( t ( +g ` G ) s ) = t ) <-> ( ( s ( +g ` H ) t ) = t /\ ( t ( +g ` H ) s ) = t ) ) ) |
| 18 |
17
|
anassrs |
|- ( ( ( ph /\ s e. ( Base ` G ) ) /\ t e. ( Base ` G ) ) -> ( ( ( s ( +g ` G ) t ) = t /\ ( t ( +g ` G ) s ) = t ) <-> ( ( s ( +g ` H ) t ) = t /\ ( t ( +g ` H ) s ) = t ) ) ) |
| 19 |
11 18
|
raleqbidva |
|- ( ( ph /\ s e. ( Base ` G ) ) -> ( A. t e. ( Base ` G ) ( ( s ( +g ` G ) t ) = t /\ ( t ( +g ` G ) s ) = t ) <-> A. t e. ( Base ` H ) ( ( s ( +g ` H ) t ) = t /\ ( t ( +g ` H ) s ) = t ) ) ) |
| 20 |
4 19
|
rabeqbidva |
|- ( ph -> { s e. ( Base ` G ) | A. t e. ( Base ` G ) ( ( s ( +g ` G ) t ) = t /\ ( t ( +g ` G ) s ) = t ) } = { s e. ( Base ` H ) | A. t e. ( Base ` H ) ( ( s ( +g ` H ) t ) = t /\ ( t ( +g ` H ) s ) = t ) } ) |
| 21 |
20
|
sseq2d |
|- ( ph -> ( ran F C_ { s e. ( Base ` G ) | A. t e. ( Base ` G ) ( ( s ( +g ` G ) t ) = t /\ ( t ( +g ` G ) s ) = t ) } <-> ran F C_ { s e. ( Base ` H ) | A. t e. ( Base ` H ) ( ( s ( +g ` H ) t ) = t /\ ( t ( +g ` H ) s ) = t ) } ) ) |
| 22 |
|
eqidd |
|- ( ph -> ( Base ` G ) = ( Base ` G ) ) |
| 23 |
22 4 6
|
grpidpropd |
|- ( ph -> ( 0g ` G ) = ( 0g ` H ) ) |
| 24 |
|
simprl |
|- ( ( ph /\ ( n e. ( ZZ>= ` m ) /\ dom F = ( m ... n ) ) ) -> n e. ( ZZ>= ` m ) ) |
| 25 |
8
|
ad2antrr |
|- ( ( ( ph /\ ( n e. ( ZZ>= ` m ) /\ dom F = ( m ... n ) ) ) /\ s e. ( m ... n ) ) -> ran F C_ ( Base ` G ) ) |
| 26 |
7
|
ad2antrr |
|- ( ( ( ph /\ ( n e. ( ZZ>= ` m ) /\ dom F = ( m ... n ) ) ) /\ s e. ( m ... n ) ) -> Fun F ) |
| 27 |
|
simpr |
|- ( ( ( ph /\ ( n e. ( ZZ>= ` m ) /\ dom F = ( m ... n ) ) ) /\ s e. ( m ... n ) ) -> s e. ( m ... n ) ) |
| 28 |
|
simplrr |
|- ( ( ( ph /\ ( n e. ( ZZ>= ` m ) /\ dom F = ( m ... n ) ) ) /\ s e. ( m ... n ) ) -> dom F = ( m ... n ) ) |
| 29 |
27 28
|
eleqtrrd |
|- ( ( ( ph /\ ( n e. ( ZZ>= ` m ) /\ dom F = ( m ... n ) ) ) /\ s e. ( m ... n ) ) -> s e. dom F ) |
| 30 |
|
fvelrn |
|- ( ( Fun F /\ s e. dom F ) -> ( F ` s ) e. ran F ) |
| 31 |
26 29 30
|
syl2anc |
|- ( ( ( ph /\ ( n e. ( ZZ>= ` m ) /\ dom F = ( m ... n ) ) ) /\ s e. ( m ... n ) ) -> ( F ` s ) e. ran F ) |
| 32 |
25 31
|
sseldd |
|- ( ( ( ph /\ ( n e. ( ZZ>= ` m ) /\ dom F = ( m ... n ) ) ) /\ s e. ( m ... n ) ) -> ( F ` s ) e. ( Base ` G ) ) |
| 33 |
5
|
adantlr |
|- ( ( ( ph /\ ( n e. ( ZZ>= ` m ) /\ dom F = ( m ... n ) ) ) /\ ( s e. ( Base ` G ) /\ t e. ( Base ` G ) ) ) -> ( s ( +g ` G ) t ) e. ( Base ` G ) ) |
| 34 |
6
|
adantlr |
|- ( ( ( ph /\ ( n e. ( ZZ>= ` m ) /\ dom F = ( m ... n ) ) ) /\ ( s e. ( Base ` G ) /\ t e. ( Base ` G ) ) ) -> ( s ( +g ` G ) t ) = ( s ( +g ` H ) t ) ) |
| 35 |
24 32 33 34
|
seqfeq4 |
|- ( ( ph /\ ( n e. ( ZZ>= ` m ) /\ dom F = ( m ... n ) ) ) -> ( seq m ( ( +g ` G ) , F ) ` n ) = ( seq m ( ( +g ` H ) , F ) ` n ) ) |
| 36 |
35
|
eqeq2d |
|- ( ( ph /\ ( n e. ( ZZ>= ` m ) /\ dom F = ( m ... n ) ) ) -> ( x = ( seq m ( ( +g ` G ) , F ) ` n ) <-> x = ( seq m ( ( +g ` H ) , F ) ` n ) ) ) |
| 37 |
36
|
anassrs |
|- ( ( ( ph /\ n e. ( ZZ>= ` m ) ) /\ dom F = ( m ... n ) ) -> ( x = ( seq m ( ( +g ` G ) , F ) ` n ) <-> x = ( seq m ( ( +g ` H ) , F ) ` n ) ) ) |
| 38 |
37
|
pm5.32da |
|- ( ( ph /\ n e. ( ZZ>= ` m ) ) -> ( ( dom F = ( m ... n ) /\ x = ( seq m ( ( +g ` G ) , F ) ` n ) ) <-> ( dom F = ( m ... n ) /\ x = ( seq m ( ( +g ` H ) , F ) ` n ) ) ) ) |
| 39 |
38
|
rexbidva |
|- ( ph -> ( E. n e. ( ZZ>= ` m ) ( dom F = ( m ... n ) /\ x = ( seq m ( ( +g ` G ) , F ) ` n ) ) <-> E. n e. ( ZZ>= ` m ) ( dom F = ( m ... n ) /\ x = ( seq m ( ( +g ` H ) , F ) ` n ) ) ) ) |
| 40 |
39
|
exbidv |
|- ( ph -> ( E. m E. n e. ( ZZ>= ` m ) ( dom F = ( m ... n ) /\ x = ( seq m ( ( +g ` G ) , F ) ` n ) ) <-> E. m E. n e. ( ZZ>= ` m ) ( dom F = ( m ... n ) /\ x = ( seq m ( ( +g ` H ) , F ) ` n ) ) ) ) |
| 41 |
40
|
iotabidv |
|- ( ph -> ( iota x E. m E. n e. ( ZZ>= ` m ) ( dom F = ( m ... n ) /\ x = ( seq m ( ( +g ` G ) , F ) ` n ) ) ) = ( iota x E. m E. n e. ( ZZ>= ` m ) ( dom F = ( m ... n ) /\ x = ( seq m ( ( +g ` H ) , F ) ` n ) ) ) ) |
| 42 |
20
|
difeq2d |
|- ( ph -> ( _V \ { s e. ( Base ` G ) | A. t e. ( Base ` G ) ( ( s ( +g ` G ) t ) = t /\ ( t ( +g ` G ) s ) = t ) } ) = ( _V \ { s e. ( Base ` H ) | A. t e. ( Base ` H ) ( ( s ( +g ` H ) t ) = t /\ ( t ( +g ` H ) s ) = t ) } ) ) |
| 43 |
42
|
imaeq2d |
|- ( ph -> ( `' F " ( _V \ { s e. ( Base ` G ) | A. t e. ( Base ` G ) ( ( s ( +g ` G ) t ) = t /\ ( t ( +g ` G ) s ) = t ) } ) ) = ( `' F " ( _V \ { s e. ( Base ` H ) | A. t e. ( Base ` H ) ( ( s ( +g ` H ) t ) = t /\ ( t ( +g ` H ) s ) = t ) } ) ) ) |
| 44 |
43 9 10
|
3eqtr4g |
|- ( ph -> A = B ) |
| 45 |
44
|
fveq2d |
|- ( ph -> ( # ` A ) = ( # ` B ) ) |
| 46 |
45
|
fveq2d |
|- ( ph -> ( seq 1 ( ( +g ` G ) , ( F o. f ) ) ` ( # ` A ) ) = ( seq 1 ( ( +g ` G ) , ( F o. f ) ) ` ( # ` B ) ) ) |
| 47 |
46
|
adantr |
|- ( ( ph /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) -> ( seq 1 ( ( +g ` G ) , ( F o. f ) ) ` ( # ` A ) ) = ( seq 1 ( ( +g ` G ) , ( F o. f ) ) ` ( # ` B ) ) ) |
| 48 |
|
simpr |
|- ( ( ( ph /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) /\ ( # ` B ) e. ( ZZ>= ` 1 ) ) -> ( # ` B ) e. ( ZZ>= ` 1 ) ) |
| 49 |
8
|
ad3antrrr |
|- ( ( ( ( ph /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) /\ ( # ` B ) e. ( ZZ>= ` 1 ) ) /\ a e. ( 1 ... ( # ` B ) ) ) -> ran F C_ ( Base ` G ) ) |
| 50 |
|
f1ofun |
|- ( f : ( 1 ... ( # ` A ) ) -1-1-onto-> A -> Fun f ) |
| 51 |
50
|
ad3antlr |
|- ( ( ( ( ph /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) /\ ( # ` B ) e. ( ZZ>= ` 1 ) ) /\ a e. ( 1 ... ( # ` B ) ) ) -> Fun f ) |
| 52 |
|
simpr |
|- ( ( ( ( ph /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) /\ ( # ` B ) e. ( ZZ>= ` 1 ) ) /\ a e. ( 1 ... ( # ` B ) ) ) -> a e. ( 1 ... ( # ` B ) ) ) |
| 53 |
|
f1odm |
|- ( f : ( 1 ... ( # ` A ) ) -1-1-onto-> A -> dom f = ( 1 ... ( # ` A ) ) ) |
| 54 |
53
|
ad3antlr |
|- ( ( ( ( ph /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) /\ ( # ` B ) e. ( ZZ>= ` 1 ) ) /\ a e. ( 1 ... ( # ` B ) ) ) -> dom f = ( 1 ... ( # ` A ) ) ) |
| 55 |
45
|
oveq2d |
|- ( ph -> ( 1 ... ( # ` A ) ) = ( 1 ... ( # ` B ) ) ) |
| 56 |
55
|
ad3antrrr |
|- ( ( ( ( ph /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) /\ ( # ` B ) e. ( ZZ>= ` 1 ) ) /\ a e. ( 1 ... ( # ` B ) ) ) -> ( 1 ... ( # ` A ) ) = ( 1 ... ( # ` B ) ) ) |
| 57 |
54 56
|
eqtrd |
|- ( ( ( ( ph /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) /\ ( # ` B ) e. ( ZZ>= ` 1 ) ) /\ a e. ( 1 ... ( # ` B ) ) ) -> dom f = ( 1 ... ( # ` B ) ) ) |
| 58 |
52 57
|
eleqtrrd |
|- ( ( ( ( ph /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) /\ ( # ` B ) e. ( ZZ>= ` 1 ) ) /\ a e. ( 1 ... ( # ` B ) ) ) -> a e. dom f ) |
| 59 |
|
fvco |
|- ( ( Fun f /\ a e. dom f ) -> ( ( F o. f ) ` a ) = ( F ` ( f ` a ) ) ) |
| 60 |
51 58 59
|
syl2anc |
|- ( ( ( ( ph /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) /\ ( # ` B ) e. ( ZZ>= ` 1 ) ) /\ a e. ( 1 ... ( # ` B ) ) ) -> ( ( F o. f ) ` a ) = ( F ` ( f ` a ) ) ) |
| 61 |
7
|
ad3antrrr |
|- ( ( ( ( ph /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) /\ ( # ` B ) e. ( ZZ>= ` 1 ) ) /\ a e. ( 1 ... ( # ` B ) ) ) -> Fun F ) |
| 62 |
|
difpreima |
|- ( Fun F -> ( `' F " ( _V \ { s e. ( Base ` G ) | A. t e. ( Base ` G ) ( ( s ( +g ` G ) t ) = t /\ ( t ( +g ` G ) s ) = t ) } ) ) = ( ( `' F " _V ) \ ( `' F " { s e. ( Base ` G ) | A. t e. ( Base ` G ) ( ( s ( +g ` G ) t ) = t /\ ( t ( +g ` G ) s ) = t ) } ) ) ) |
| 63 |
7 62
|
syl |
|- ( ph -> ( `' F " ( _V \ { s e. ( Base ` G ) | A. t e. ( Base ` G ) ( ( s ( +g ` G ) t ) = t /\ ( t ( +g ` G ) s ) = t ) } ) ) = ( ( `' F " _V ) \ ( `' F " { s e. ( Base ` G ) | A. t e. ( Base ` G ) ( ( s ( +g ` G ) t ) = t /\ ( t ( +g ` G ) s ) = t ) } ) ) ) |
| 64 |
9 63
|
eqtrid |
|- ( ph -> A = ( ( `' F " _V ) \ ( `' F " { s e. ( Base ` G ) | A. t e. ( Base ` G ) ( ( s ( +g ` G ) t ) = t /\ ( t ( +g ` G ) s ) = t ) } ) ) ) |
| 65 |
|
difss |
|- ( ( `' F " _V ) \ ( `' F " { s e. ( Base ` G ) | A. t e. ( Base ` G ) ( ( s ( +g ` G ) t ) = t /\ ( t ( +g ` G ) s ) = t ) } ) ) C_ ( `' F " _V ) |
| 66 |
64 65
|
eqsstrdi |
|- ( ph -> A C_ ( `' F " _V ) ) |
| 67 |
|
dfdm4 |
|- dom F = ran `' F |
| 68 |
|
dfrn4 |
|- ran `' F = ( `' F " _V ) |
| 69 |
67 68
|
eqtri |
|- dom F = ( `' F " _V ) |
| 70 |
66 69
|
sseqtrrdi |
|- ( ph -> A C_ dom F ) |
| 71 |
70
|
ad3antrrr |
|- ( ( ( ( ph /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) /\ ( # ` B ) e. ( ZZ>= ` 1 ) ) /\ a e. ( 1 ... ( # ` B ) ) ) -> A C_ dom F ) |
| 72 |
|
f1of |
|- ( f : ( 1 ... ( # ` A ) ) -1-1-onto-> A -> f : ( 1 ... ( # ` A ) ) --> A ) |
| 73 |
72
|
ad3antlr |
|- ( ( ( ( ph /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) /\ ( # ` B ) e. ( ZZ>= ` 1 ) ) /\ a e. ( 1 ... ( # ` B ) ) ) -> f : ( 1 ... ( # ` A ) ) --> A ) |
| 74 |
52 56
|
eleqtrrd |
|- ( ( ( ( ph /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) /\ ( # ` B ) e. ( ZZ>= ` 1 ) ) /\ a e. ( 1 ... ( # ` B ) ) ) -> a e. ( 1 ... ( # ` A ) ) ) |
| 75 |
73 74
|
ffvelcdmd |
|- ( ( ( ( ph /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) /\ ( # ` B ) e. ( ZZ>= ` 1 ) ) /\ a e. ( 1 ... ( # ` B ) ) ) -> ( f ` a ) e. A ) |
| 76 |
71 75
|
sseldd |
|- ( ( ( ( ph /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) /\ ( # ` B ) e. ( ZZ>= ` 1 ) ) /\ a e. ( 1 ... ( # ` B ) ) ) -> ( f ` a ) e. dom F ) |
| 77 |
|
fvelrn |
|- ( ( Fun F /\ ( f ` a ) e. dom F ) -> ( F ` ( f ` a ) ) e. ran F ) |
| 78 |
61 76 77
|
syl2anc |
|- ( ( ( ( ph /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) /\ ( # ` B ) e. ( ZZ>= ` 1 ) ) /\ a e. ( 1 ... ( # ` B ) ) ) -> ( F ` ( f ` a ) ) e. ran F ) |
| 79 |
60 78
|
eqeltrd |
|- ( ( ( ( ph /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) /\ ( # ` B ) e. ( ZZ>= ` 1 ) ) /\ a e. ( 1 ... ( # ` B ) ) ) -> ( ( F o. f ) ` a ) e. ran F ) |
| 80 |
49 79
|
sseldd |
|- ( ( ( ( ph /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) /\ ( # ` B ) e. ( ZZ>= ` 1 ) ) /\ a e. ( 1 ... ( # ` B ) ) ) -> ( ( F o. f ) ` a ) e. ( Base ` G ) ) |
| 81 |
5
|
caovclg |
|- ( ( ph /\ ( a e. ( Base ` G ) /\ b e. ( Base ` G ) ) ) -> ( a ( +g ` G ) b ) e. ( Base ` G ) ) |
| 82 |
81
|
ad4ant14 |
|- ( ( ( ( ph /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) /\ ( # ` B ) e. ( ZZ>= ` 1 ) ) /\ ( a e. ( Base ` G ) /\ b e. ( Base ` G ) ) ) -> ( a ( +g ` G ) b ) e. ( Base ` G ) ) |
| 83 |
13
|
ad4ant14 |
|- ( ( ( ( ph /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) /\ ( # ` B ) e. ( ZZ>= ` 1 ) ) /\ ( a e. ( Base ` G ) /\ b e. ( Base ` G ) ) ) -> ( a ( +g ` G ) b ) = ( a ( +g ` H ) b ) ) |
| 84 |
48 80 82 83
|
seqfeq4 |
|- ( ( ( ph /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) /\ ( # ` B ) e. ( ZZ>= ` 1 ) ) -> ( seq 1 ( ( +g ` G ) , ( F o. f ) ) ` ( # ` B ) ) = ( seq 1 ( ( +g ` H ) , ( F o. f ) ) ` ( # ` B ) ) ) |
| 85 |
|
simpr |
|- ( ( ph /\ -. ( # ` B ) e. ( ZZ>= ` 1 ) ) -> -. ( # ` B ) e. ( ZZ>= ` 1 ) ) |
| 86 |
|
1z |
|- 1 e. ZZ |
| 87 |
|
seqfn |
|- ( 1 e. ZZ -> seq 1 ( ( +g ` G ) , ( F o. f ) ) Fn ( ZZ>= ` 1 ) ) |
| 88 |
|
fndm |
|- ( seq 1 ( ( +g ` G ) , ( F o. f ) ) Fn ( ZZ>= ` 1 ) -> dom seq 1 ( ( +g ` G ) , ( F o. f ) ) = ( ZZ>= ` 1 ) ) |
| 89 |
86 87 88
|
mp2b |
|- dom seq 1 ( ( +g ` G ) , ( F o. f ) ) = ( ZZ>= ` 1 ) |
| 90 |
89
|
eleq2i |
|- ( ( # ` B ) e. dom seq 1 ( ( +g ` G ) , ( F o. f ) ) <-> ( # ` B ) e. ( ZZ>= ` 1 ) ) |
| 91 |
85 90
|
sylnibr |
|- ( ( ph /\ -. ( # ` B ) e. ( ZZ>= ` 1 ) ) -> -. ( # ` B ) e. dom seq 1 ( ( +g ` G ) , ( F o. f ) ) ) |
| 92 |
|
ndmfv |
|- ( -. ( # ` B ) e. dom seq 1 ( ( +g ` G ) , ( F o. f ) ) -> ( seq 1 ( ( +g ` G ) , ( F o. f ) ) ` ( # ` B ) ) = (/) ) |
| 93 |
91 92
|
syl |
|- ( ( ph /\ -. ( # ` B ) e. ( ZZ>= ` 1 ) ) -> ( seq 1 ( ( +g ` G ) , ( F o. f ) ) ` ( # ` B ) ) = (/) ) |
| 94 |
|
seqfn |
|- ( 1 e. ZZ -> seq 1 ( ( +g ` H ) , ( F o. f ) ) Fn ( ZZ>= ` 1 ) ) |
| 95 |
|
fndm |
|- ( seq 1 ( ( +g ` H ) , ( F o. f ) ) Fn ( ZZ>= ` 1 ) -> dom seq 1 ( ( +g ` H ) , ( F o. f ) ) = ( ZZ>= ` 1 ) ) |
| 96 |
86 94 95
|
mp2b |
|- dom seq 1 ( ( +g ` H ) , ( F o. f ) ) = ( ZZ>= ` 1 ) |
| 97 |
96
|
eleq2i |
|- ( ( # ` B ) e. dom seq 1 ( ( +g ` H ) , ( F o. f ) ) <-> ( # ` B ) e. ( ZZ>= ` 1 ) ) |
| 98 |
85 97
|
sylnibr |
|- ( ( ph /\ -. ( # ` B ) e. ( ZZ>= ` 1 ) ) -> -. ( # ` B ) e. dom seq 1 ( ( +g ` H ) , ( F o. f ) ) ) |
| 99 |
|
ndmfv |
|- ( -. ( # ` B ) e. dom seq 1 ( ( +g ` H ) , ( F o. f ) ) -> ( seq 1 ( ( +g ` H ) , ( F o. f ) ) ` ( # ` B ) ) = (/) ) |
| 100 |
98 99
|
syl |
|- ( ( ph /\ -. ( # ` B ) e. ( ZZ>= ` 1 ) ) -> ( seq 1 ( ( +g ` H ) , ( F o. f ) ) ` ( # ` B ) ) = (/) ) |
| 101 |
93 100
|
eqtr4d |
|- ( ( ph /\ -. ( # ` B ) e. ( ZZ>= ` 1 ) ) -> ( seq 1 ( ( +g ` G ) , ( F o. f ) ) ` ( # ` B ) ) = ( seq 1 ( ( +g ` H ) , ( F o. f ) ) ` ( # ` B ) ) ) |
| 102 |
101
|
adantlr |
|- ( ( ( ph /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) /\ -. ( # ` B ) e. ( ZZ>= ` 1 ) ) -> ( seq 1 ( ( +g ` G ) , ( F o. f ) ) ` ( # ` B ) ) = ( seq 1 ( ( +g ` H ) , ( F o. f ) ) ` ( # ` B ) ) ) |
| 103 |
84 102
|
pm2.61dan |
|- ( ( ph /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) -> ( seq 1 ( ( +g ` G ) , ( F o. f ) ) ` ( # ` B ) ) = ( seq 1 ( ( +g ` H ) , ( F o. f ) ) ` ( # ` B ) ) ) |
| 104 |
47 103
|
eqtrd |
|- ( ( ph /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) -> ( seq 1 ( ( +g ` G ) , ( F o. f ) ) ` ( # ` A ) ) = ( seq 1 ( ( +g ` H ) , ( F o. f ) ) ` ( # ` B ) ) ) |
| 105 |
104
|
eqeq2d |
|- ( ( ph /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) -> ( x = ( seq 1 ( ( +g ` G ) , ( F o. f ) ) ` ( # ` A ) ) <-> x = ( seq 1 ( ( +g ` H ) , ( F o. f ) ) ` ( # ` B ) ) ) ) |
| 106 |
105
|
pm5.32da |
|- ( ph -> ( ( f : ( 1 ... ( # ` A ) ) -1-1-onto-> A /\ x = ( seq 1 ( ( +g ` G ) , ( F o. f ) ) ` ( # ` A ) ) ) <-> ( f : ( 1 ... ( # ` A ) ) -1-1-onto-> A /\ x = ( seq 1 ( ( +g ` H ) , ( F o. f ) ) ` ( # ` B ) ) ) ) ) |
| 107 |
55
|
f1oeq2d |
|- ( ph -> ( f : ( 1 ... ( # ` A ) ) -1-1-onto-> A <-> f : ( 1 ... ( # ` B ) ) -1-1-onto-> A ) ) |
| 108 |
44
|
f1oeq3d |
|- ( ph -> ( f : ( 1 ... ( # ` B ) ) -1-1-onto-> A <-> f : ( 1 ... ( # ` B ) ) -1-1-onto-> B ) ) |
| 109 |
107 108
|
bitrd |
|- ( ph -> ( f : ( 1 ... ( # ` A ) ) -1-1-onto-> A <-> f : ( 1 ... ( # ` B ) ) -1-1-onto-> B ) ) |
| 110 |
109
|
anbi1d |
|- ( ph -> ( ( f : ( 1 ... ( # ` A ) ) -1-1-onto-> A /\ x = ( seq 1 ( ( +g ` H ) , ( F o. f ) ) ` ( # ` B ) ) ) <-> ( f : ( 1 ... ( # ` B ) ) -1-1-onto-> B /\ x = ( seq 1 ( ( +g ` H ) , ( F o. f ) ) ` ( # ` B ) ) ) ) ) |
| 111 |
106 110
|
bitrd |
|- ( ph -> ( ( f : ( 1 ... ( # ` A ) ) -1-1-onto-> A /\ x = ( seq 1 ( ( +g ` G ) , ( F o. f ) ) ` ( # ` A ) ) ) <-> ( f : ( 1 ... ( # ` B ) ) -1-1-onto-> B /\ x = ( seq 1 ( ( +g ` H ) , ( F o. f ) ) ` ( # ` B ) ) ) ) ) |
| 112 |
111
|
exbidv |
|- ( ph -> ( E. f ( f : ( 1 ... ( # ` A ) ) -1-1-onto-> A /\ x = ( seq 1 ( ( +g ` G ) , ( F o. f ) ) ` ( # ` A ) ) ) <-> E. f ( f : ( 1 ... ( # ` B ) ) -1-1-onto-> B /\ x = ( seq 1 ( ( +g ` H ) , ( F o. f ) ) ` ( # ` B ) ) ) ) ) |
| 113 |
112
|
iotabidv |
|- ( ph -> ( iota x E. f ( f : ( 1 ... ( # ` A ) ) -1-1-onto-> A /\ x = ( seq 1 ( ( +g ` G ) , ( F o. f ) ) ` ( # ` A ) ) ) ) = ( iota x E. f ( f : ( 1 ... ( # ` B ) ) -1-1-onto-> B /\ x = ( seq 1 ( ( +g ` H ) , ( F o. f ) ) ` ( # ` B ) ) ) ) ) |
| 114 |
41 113
|
ifeq12d |
|- ( ph -> if ( dom F e. ran ... , ( iota x E. m E. n e. ( ZZ>= ` m ) ( dom F = ( m ... n ) /\ x = ( seq m ( ( +g ` G ) , F ) ` n ) ) ) , ( iota x E. f ( f : ( 1 ... ( # ` A ) ) -1-1-onto-> A /\ x = ( seq 1 ( ( +g ` G ) , ( F o. f ) ) ` ( # ` A ) ) ) ) ) = if ( dom F e. ran ... , ( iota x E. m E. n e. ( ZZ>= ` m ) ( dom F = ( m ... n ) /\ x = ( seq m ( ( +g ` H ) , F ) ` n ) ) ) , ( iota x E. f ( f : ( 1 ... ( # ` B ) ) -1-1-onto-> B /\ x = ( seq 1 ( ( +g ` H ) , ( F o. f ) ) ` ( # ` B ) ) ) ) ) ) |
| 115 |
21 23 114
|
ifbieq12d |
|- ( ph -> if ( ran F C_ { s e. ( Base ` G ) | A. t e. ( Base ` G ) ( ( s ( +g ` G ) t ) = t /\ ( t ( +g ` G ) s ) = t ) } , ( 0g ` G ) , if ( dom F e. ran ... , ( iota x E. m E. n e. ( ZZ>= ` m ) ( dom F = ( m ... n ) /\ x = ( seq m ( ( +g ` G ) , F ) ` n ) ) ) , ( iota x E. f ( f : ( 1 ... ( # ` A ) ) -1-1-onto-> A /\ x = ( seq 1 ( ( +g ` G ) , ( F o. f ) ) ` ( # ` A ) ) ) ) ) ) = if ( ran F C_ { s e. ( Base ` H ) | A. t e. ( Base ` H ) ( ( s ( +g ` H ) t ) = t /\ ( t ( +g ` H ) s ) = t ) } , ( 0g ` H ) , if ( dom F e. ran ... , ( iota x E. m E. n e. ( ZZ>= ` m ) ( dom F = ( m ... n ) /\ x = ( seq m ( ( +g ` H ) , F ) ` n ) ) ) , ( iota x E. f ( f : ( 1 ... ( # ` B ) ) -1-1-onto-> B /\ x = ( seq 1 ( ( +g ` H ) , ( F o. f ) ) ` ( # ` B ) ) ) ) ) ) ) |
| 116 |
|
eqid |
|- ( Base ` G ) = ( Base ` G ) |
| 117 |
|
eqid |
|- ( 0g ` G ) = ( 0g ` G ) |
| 118 |
|
eqid |
|- ( +g ` G ) = ( +g ` G ) |
| 119 |
|
eqid |
|- { s e. ( Base ` G ) | A. t e. ( Base ` G ) ( ( s ( +g ` G ) t ) = t /\ ( t ( +g ` G ) s ) = t ) } = { s e. ( Base ` G ) | A. t e. ( Base ` G ) ( ( s ( +g ` G ) t ) = t /\ ( t ( +g ` G ) s ) = t ) } |
| 120 |
9
|
a1i |
|- ( ph -> A = ( `' F " ( _V \ { s e. ( Base ` G ) | A. t e. ( Base ` G ) ( ( s ( +g ` G ) t ) = t /\ ( t ( +g ` G ) s ) = t ) } ) ) ) |
| 121 |
|
eqidd |
|- ( ph -> dom F = dom F ) |
| 122 |
116 117 118 119 120 2 1 121
|
gsumvalx |
|- ( ph -> ( G gsum F ) = if ( ran F C_ { s e. ( Base ` G ) | A. t e. ( Base ` G ) ( ( s ( +g ` G ) t ) = t /\ ( t ( +g ` G ) s ) = t ) } , ( 0g ` G ) , if ( dom F e. ran ... , ( iota x E. m E. n e. ( ZZ>= ` m ) ( dom F = ( m ... n ) /\ x = ( seq m ( ( +g ` G ) , F ) ` n ) ) ) , ( iota x E. f ( f : ( 1 ... ( # ` A ) ) -1-1-onto-> A /\ x = ( seq 1 ( ( +g ` G ) , ( F o. f ) ) ` ( # ` A ) ) ) ) ) ) ) |
| 123 |
|
eqid |
|- ( Base ` H ) = ( Base ` H ) |
| 124 |
|
eqid |
|- ( 0g ` H ) = ( 0g ` H ) |
| 125 |
|
eqid |
|- ( +g ` H ) = ( +g ` H ) |
| 126 |
|
eqid |
|- { s e. ( Base ` H ) | A. t e. ( Base ` H ) ( ( s ( +g ` H ) t ) = t /\ ( t ( +g ` H ) s ) = t ) } = { s e. ( Base ` H ) | A. t e. ( Base ` H ) ( ( s ( +g ` H ) t ) = t /\ ( t ( +g ` H ) s ) = t ) } |
| 127 |
10
|
a1i |
|- ( ph -> B = ( `' F " ( _V \ { s e. ( Base ` H ) | A. t e. ( Base ` H ) ( ( s ( +g ` H ) t ) = t /\ ( t ( +g ` H ) s ) = t ) } ) ) ) |
| 128 |
123 124 125 126 127 3 1 121
|
gsumvalx |
|- ( ph -> ( H gsum F ) = if ( ran F C_ { s e. ( Base ` H ) | A. t e. ( Base ` H ) ( ( s ( +g ` H ) t ) = t /\ ( t ( +g ` H ) s ) = t ) } , ( 0g ` H ) , if ( dom F e. ran ... , ( iota x E. m E. n e. ( ZZ>= ` m ) ( dom F = ( m ... n ) /\ x = ( seq m ( ( +g ` H ) , F ) ` n ) ) ) , ( iota x E. f ( f : ( 1 ... ( # ` B ) ) -1-1-onto-> B /\ x = ( seq 1 ( ( +g ` H ) , ( F o. f ) ) ` ( # ` B ) ) ) ) ) ) ) |
| 129 |
115 122 128
|
3eqtr4d |
|- ( ph -> ( G gsum F ) = ( H gsum F ) ) |