Step |
Hyp |
Ref |
Expression |
1 |
|
gsummgmpropd.f |
⊢ ( 𝜑 → 𝐹 ∈ 𝑉 ) |
2 |
|
gsummgmpropd.g |
⊢ ( 𝜑 → 𝐺 ∈ 𝑊 ) |
3 |
|
gsummgmpropd.h |
⊢ ( 𝜑 → 𝐻 ∈ 𝑋 ) |
4 |
|
gsummgmpropd.b |
⊢ ( 𝜑 → ( Base ‘ 𝐺 ) = ( Base ‘ 𝐻 ) ) |
5 |
|
gsummgmpropd.m |
⊢ ( 𝜑 → 𝐺 ∈ Mgm ) |
6 |
|
gsummgmpropd.e |
⊢ ( ( 𝜑 ∧ ( 𝑠 ∈ ( Base ‘ 𝐺 ) ∧ 𝑡 ∈ ( Base ‘ 𝐺 ) ) ) → ( 𝑠 ( +g ‘ 𝐺 ) 𝑡 ) = ( 𝑠 ( +g ‘ 𝐻 ) 𝑡 ) ) |
7 |
|
gsummgmpropd.n |
⊢ ( 𝜑 → Fun 𝐹 ) |
8 |
|
gsummgmpropd.r |
⊢ ( 𝜑 → ran 𝐹 ⊆ ( Base ‘ 𝐺 ) ) |
9 |
|
eqid |
⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) |
10 |
|
eqid |
⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) |
11 |
9 10
|
mgmcl |
⊢ ( ( 𝐺 ∈ Mgm ∧ 𝑠 ∈ ( Base ‘ 𝐺 ) ∧ 𝑡 ∈ ( Base ‘ 𝐺 ) ) → ( 𝑠 ( +g ‘ 𝐺 ) 𝑡 ) ∈ ( Base ‘ 𝐺 ) ) |
12 |
11
|
3expib |
⊢ ( 𝐺 ∈ Mgm → ( ( 𝑠 ∈ ( Base ‘ 𝐺 ) ∧ 𝑡 ∈ ( Base ‘ 𝐺 ) ) → ( 𝑠 ( +g ‘ 𝐺 ) 𝑡 ) ∈ ( Base ‘ 𝐺 ) ) ) |
13 |
5 12
|
syl |
⊢ ( 𝜑 → ( ( 𝑠 ∈ ( Base ‘ 𝐺 ) ∧ 𝑡 ∈ ( Base ‘ 𝐺 ) ) → ( 𝑠 ( +g ‘ 𝐺 ) 𝑡 ) ∈ ( Base ‘ 𝐺 ) ) ) |
14 |
13
|
imp |
⊢ ( ( 𝜑 ∧ ( 𝑠 ∈ ( Base ‘ 𝐺 ) ∧ 𝑡 ∈ ( Base ‘ 𝐺 ) ) ) → ( 𝑠 ( +g ‘ 𝐺 ) 𝑡 ) ∈ ( Base ‘ 𝐺 ) ) |
15 |
1 2 3 4 14 6 7 8
|
gsumpropd2 |
⊢ ( 𝜑 → ( 𝐺 Σg 𝐹 ) = ( 𝐻 Σg 𝐹 ) ) |