| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gsummgmpropd.f |
|- ( ph -> F e. V ) |
| 2 |
|
gsummgmpropd.g |
|- ( ph -> G e. W ) |
| 3 |
|
gsummgmpropd.h |
|- ( ph -> H e. X ) |
| 4 |
|
gsummgmpropd.b |
|- ( ph -> ( Base ` G ) = ( Base ` H ) ) |
| 5 |
|
gsummgmpropd.m |
|- ( ph -> G e. Mgm ) |
| 6 |
|
gsummgmpropd.e |
|- ( ( ph /\ ( s e. ( Base ` G ) /\ t e. ( Base ` G ) ) ) -> ( s ( +g ` G ) t ) = ( s ( +g ` H ) t ) ) |
| 7 |
|
gsummgmpropd.n |
|- ( ph -> Fun F ) |
| 8 |
|
gsummgmpropd.r |
|- ( ph -> ran F C_ ( Base ` G ) ) |
| 9 |
|
eqid |
|- ( Base ` G ) = ( Base ` G ) |
| 10 |
|
eqid |
|- ( +g ` G ) = ( +g ` G ) |
| 11 |
9 10
|
mgmcl |
|- ( ( G e. Mgm /\ s e. ( Base ` G ) /\ t e. ( Base ` G ) ) -> ( s ( +g ` G ) t ) e. ( Base ` G ) ) |
| 12 |
11
|
3expib |
|- ( G e. Mgm -> ( ( s e. ( Base ` G ) /\ t e. ( Base ` G ) ) -> ( s ( +g ` G ) t ) e. ( Base ` G ) ) ) |
| 13 |
5 12
|
syl |
|- ( ph -> ( ( s e. ( Base ` G ) /\ t e. ( Base ` G ) ) -> ( s ( +g ` G ) t ) e. ( Base ` G ) ) ) |
| 14 |
13
|
imp |
|- ( ( ph /\ ( s e. ( Base ` G ) /\ t e. ( Base ` G ) ) ) -> ( s ( +g ` G ) t ) e. ( Base ` G ) ) |
| 15 |
1 2 3 4 14 6 7 8
|
gsumpropd2 |
|- ( ph -> ( G gsum F ) = ( H gsum F ) ) |