Metamath Proof Explorer


Theorem gsummgmpropd

Description: A stronger version of gsumpropd if at least one of the involved structures is a magma, see gsumpropd2 . (Contributed by AV, 31-Jan-2020)

Ref Expression
Hypotheses gsummgmpropd.f
|- ( ph -> F e. V )
gsummgmpropd.g
|- ( ph -> G e. W )
gsummgmpropd.h
|- ( ph -> H e. X )
gsummgmpropd.b
|- ( ph -> ( Base ` G ) = ( Base ` H ) )
gsummgmpropd.m
|- ( ph -> G e. Mgm )
gsummgmpropd.e
|- ( ( ph /\ ( s e. ( Base ` G ) /\ t e. ( Base ` G ) ) ) -> ( s ( +g ` G ) t ) = ( s ( +g ` H ) t ) )
gsummgmpropd.n
|- ( ph -> Fun F )
gsummgmpropd.r
|- ( ph -> ran F C_ ( Base ` G ) )
Assertion gsummgmpropd
|- ( ph -> ( G gsum F ) = ( H gsum F ) )

Proof

Step Hyp Ref Expression
1 gsummgmpropd.f
 |-  ( ph -> F e. V )
2 gsummgmpropd.g
 |-  ( ph -> G e. W )
3 gsummgmpropd.h
 |-  ( ph -> H e. X )
4 gsummgmpropd.b
 |-  ( ph -> ( Base ` G ) = ( Base ` H ) )
5 gsummgmpropd.m
 |-  ( ph -> G e. Mgm )
6 gsummgmpropd.e
 |-  ( ( ph /\ ( s e. ( Base ` G ) /\ t e. ( Base ` G ) ) ) -> ( s ( +g ` G ) t ) = ( s ( +g ` H ) t ) )
7 gsummgmpropd.n
 |-  ( ph -> Fun F )
8 gsummgmpropd.r
 |-  ( ph -> ran F C_ ( Base ` G ) )
9 eqid
 |-  ( Base ` G ) = ( Base ` G )
10 eqid
 |-  ( +g ` G ) = ( +g ` G )
11 9 10 mgmcl
 |-  ( ( G e. Mgm /\ s e. ( Base ` G ) /\ t e. ( Base ` G ) ) -> ( s ( +g ` G ) t ) e. ( Base ` G ) )
12 11 3expib
 |-  ( G e. Mgm -> ( ( s e. ( Base ` G ) /\ t e. ( Base ` G ) ) -> ( s ( +g ` G ) t ) e. ( Base ` G ) ) )
13 5 12 syl
 |-  ( ph -> ( ( s e. ( Base ` G ) /\ t e. ( Base ` G ) ) -> ( s ( +g ` G ) t ) e. ( Base ` G ) ) )
14 13 imp
 |-  ( ( ph /\ ( s e. ( Base ` G ) /\ t e. ( Base ` G ) ) ) -> ( s ( +g ` G ) t ) e. ( Base ` G ) )
15 1 2 3 4 14 6 7 8 gsumpropd2
 |-  ( ph -> ( G gsum F ) = ( H gsum F ) )