Step |
Hyp |
Ref |
Expression |
1 |
|
gsummgmpropd.f |
|- ( ph -> F e. V ) |
2 |
|
gsummgmpropd.g |
|- ( ph -> G e. W ) |
3 |
|
gsummgmpropd.h |
|- ( ph -> H e. X ) |
4 |
|
gsummgmpropd.b |
|- ( ph -> ( Base ` G ) = ( Base ` H ) ) |
5 |
|
gsummgmpropd.m |
|- ( ph -> G e. Mgm ) |
6 |
|
gsummgmpropd.e |
|- ( ( ph /\ ( s e. ( Base ` G ) /\ t e. ( Base ` G ) ) ) -> ( s ( +g ` G ) t ) = ( s ( +g ` H ) t ) ) |
7 |
|
gsummgmpropd.n |
|- ( ph -> Fun F ) |
8 |
|
gsummgmpropd.r |
|- ( ph -> ran F C_ ( Base ` G ) ) |
9 |
|
eqid |
|- ( Base ` G ) = ( Base ` G ) |
10 |
|
eqid |
|- ( +g ` G ) = ( +g ` G ) |
11 |
9 10
|
mgmcl |
|- ( ( G e. Mgm /\ s e. ( Base ` G ) /\ t e. ( Base ` G ) ) -> ( s ( +g ` G ) t ) e. ( Base ` G ) ) |
12 |
11
|
3expib |
|- ( G e. Mgm -> ( ( s e. ( Base ` G ) /\ t e. ( Base ` G ) ) -> ( s ( +g ` G ) t ) e. ( Base ` G ) ) ) |
13 |
5 12
|
syl |
|- ( ph -> ( ( s e. ( Base ` G ) /\ t e. ( Base ` G ) ) -> ( s ( +g ` G ) t ) e. ( Base ` G ) ) ) |
14 |
13
|
imp |
|- ( ( ph /\ ( s e. ( Base ` G ) /\ t e. ( Base ` G ) ) ) -> ( s ( +g ` G ) t ) e. ( Base ` G ) ) |
15 |
1 2 3 4 14 6 7 8
|
gsumpropd2 |
|- ( ph -> ( G gsum F ) = ( H gsum F ) ) |