Metamath Proof Explorer


Theorem gsummgmpropd

Description: A stronger version of gsumpropd if at least one of the involved structures is a magma, see gsumpropd2 . (Contributed by AV, 31-Jan-2020)

Ref Expression
Hypotheses gsummgmpropd.f φ F V
gsummgmpropd.g φ G W
gsummgmpropd.h φ H X
gsummgmpropd.b φ Base G = Base H
gsummgmpropd.m φ G Mgm
gsummgmpropd.e φ s Base G t Base G s + G t = s + H t
gsummgmpropd.n φ Fun F
gsummgmpropd.r φ ran F Base G
Assertion gsummgmpropd φ G F = H F

Proof

Step Hyp Ref Expression
1 gsummgmpropd.f φ F V
2 gsummgmpropd.g φ G W
3 gsummgmpropd.h φ H X
4 gsummgmpropd.b φ Base G = Base H
5 gsummgmpropd.m φ G Mgm
6 gsummgmpropd.e φ s Base G t Base G s + G t = s + H t
7 gsummgmpropd.n φ Fun F
8 gsummgmpropd.r φ ran F Base G
9 eqid Base G = Base G
10 eqid + G = + G
11 9 10 mgmcl G Mgm s Base G t Base G s + G t Base G
12 11 3expib G Mgm s Base G t Base G s + G t Base G
13 5 12 syl φ s Base G t Base G s + G t Base G
14 13 imp φ s Base G t Base G s + G t Base G
15 1 2 3 4 14 6 7 8 gsumpropd2 φ G F = H F