Metamath Proof Explorer


Theorem gsumpropd2

Description: A stronger version of gsumpropd , working for magma, where only the closure of the addition operation on a common base is required, see gsummgmpropd . (Contributed by Thierry Arnoux, 28-Jun-2017)

Ref Expression
Hypotheses gsumpropd2.f φFV
gsumpropd2.g φGW
gsumpropd2.h φHX
gsumpropd2.b φBaseG=BaseH
gsumpropd2.c φsBaseGtBaseGs+GtBaseG
gsumpropd2.e φsBaseGtBaseGs+Gt=s+Ht
gsumpropd2.n φFunF
gsumpropd2.r φranFBaseG
Assertion gsumpropd2 φGF=HF

Proof

Step Hyp Ref Expression
1 gsumpropd2.f φFV
2 gsumpropd2.g φGW
3 gsumpropd2.h φHX
4 gsumpropd2.b φBaseG=BaseH
5 gsumpropd2.c φsBaseGtBaseGs+GtBaseG
6 gsumpropd2.e φsBaseGtBaseGs+Gt=s+Ht
7 gsumpropd2.n φFunF
8 gsumpropd2.r φranFBaseG
9 eqid F-1VsBaseG|tBaseGs+Gt=tt+Gs=t=F-1VsBaseG|tBaseGs+Gt=tt+Gs=t
10 eqid F-1VsBaseH|tBaseHs+Ht=tt+Hs=t=F-1VsBaseH|tBaseHs+Ht=tt+Hs=t
11 1 2 3 4 5 6 7 8 9 10 gsumpropd2lem φGF=HF