Metamath Proof Explorer


Theorem rnpropg

Description: The range of a pair of ordered pairs is the pair of second members. (Contributed by Thierry Arnoux, 3-Jan-2017)

Ref Expression
Assertion rnpropg ( ( 𝐴𝑉𝐵𝑊 ) → ran { ⟨ 𝐴 , 𝐶 ⟩ , ⟨ 𝐵 , 𝐷 ⟩ } = { 𝐶 , 𝐷 } )

Proof

Step Hyp Ref Expression
1 df-pr { ⟨ 𝐴 , 𝐶 ⟩ , ⟨ 𝐵 , 𝐷 ⟩ } = ( { ⟨ 𝐴 , 𝐶 ⟩ } ∪ { ⟨ 𝐵 , 𝐷 ⟩ } )
2 1 rneqi ran { ⟨ 𝐴 , 𝐶 ⟩ , ⟨ 𝐵 , 𝐷 ⟩ } = ran ( { ⟨ 𝐴 , 𝐶 ⟩ } ∪ { ⟨ 𝐵 , 𝐷 ⟩ } )
3 rnsnopg ( 𝐴𝑉 → ran { ⟨ 𝐴 , 𝐶 ⟩ } = { 𝐶 } )
4 3 adantr ( ( 𝐴𝑉𝐵𝑊 ) → ran { ⟨ 𝐴 , 𝐶 ⟩ } = { 𝐶 } )
5 rnsnopg ( 𝐵𝑊 → ran { ⟨ 𝐵 , 𝐷 ⟩ } = { 𝐷 } )
6 5 adantl ( ( 𝐴𝑉𝐵𝑊 ) → ran { ⟨ 𝐵 , 𝐷 ⟩ } = { 𝐷 } )
7 4 6 uneq12d ( ( 𝐴𝑉𝐵𝑊 ) → ( ran { ⟨ 𝐴 , 𝐶 ⟩ } ∪ ran { ⟨ 𝐵 , 𝐷 ⟩ } ) = ( { 𝐶 } ∪ { 𝐷 } ) )
8 rnun ran ( { ⟨ 𝐴 , 𝐶 ⟩ } ∪ { ⟨ 𝐵 , 𝐷 ⟩ } ) = ( ran { ⟨ 𝐴 , 𝐶 ⟩ } ∪ ran { ⟨ 𝐵 , 𝐷 ⟩ } )
9 df-pr { 𝐶 , 𝐷 } = ( { 𝐶 } ∪ { 𝐷 } )
10 7 8 9 3eqtr4g ( ( 𝐴𝑉𝐵𝑊 ) → ran ( { ⟨ 𝐴 , 𝐶 ⟩ } ∪ { ⟨ 𝐵 , 𝐷 ⟩ } ) = { 𝐶 , 𝐷 } )
11 2 10 syl5eq ( ( 𝐴𝑉𝐵𝑊 ) → ran { ⟨ 𝐴 , 𝐶 ⟩ , ⟨ 𝐵 , 𝐷 ⟩ } = { 𝐶 , 𝐷 } )