Metamath Proof Explorer


Theorem sge0ge0

Description: The sum of nonnegative extended reals is nonnegative. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses sge0ge0.x
|- ( ph -> X e. V )
sge0ge0.f
|- ( ph -> F : X --> ( 0 [,] +oo ) )
Assertion sge0ge0
|- ( ph -> 0 <_ ( sum^ ` F ) )

Proof

Step Hyp Ref Expression
1 sge0ge0.x
 |-  ( ph -> X e. V )
2 sge0ge0.f
 |-  ( ph -> F : X --> ( 0 [,] +oo ) )
3 0xr
 |-  0 e. RR*
4 3 a1i
 |-  ( ph -> 0 e. RR* )
5 pnfxr
 |-  +oo e. RR*
6 5 a1i
 |-  ( ph -> +oo e. RR* )
7 1 2 sge0cl
 |-  ( ph -> ( sum^ ` F ) e. ( 0 [,] +oo ) )
8 iccgelb
 |-  ( ( 0 e. RR* /\ +oo e. RR* /\ ( sum^ ` F ) e. ( 0 [,] +oo ) ) -> 0 <_ ( sum^ ` F ) )
9 4 6 7 8 syl3anc
 |-  ( ph -> 0 <_ ( sum^ ` F ) )