Description: The sum of nonnegative extended reals is nonnegative. (Contributed by Glauco Siliprandi, 17-Aug-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sge0ge0.x | |- ( ph -> X e. V ) |
|
| sge0ge0.f | |- ( ph -> F : X --> ( 0 [,] +oo ) ) |
||
| Assertion | sge0ge0 | |- ( ph -> 0 <_ ( sum^ ` F ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sge0ge0.x | |- ( ph -> X e. V ) |
|
| 2 | sge0ge0.f | |- ( ph -> F : X --> ( 0 [,] +oo ) ) |
|
| 3 | 0xr | |- 0 e. RR* |
|
| 4 | 3 | a1i | |- ( ph -> 0 e. RR* ) |
| 5 | pnfxr | |- +oo e. RR* |
|
| 6 | 5 | a1i | |- ( ph -> +oo e. RR* ) |
| 7 | 1 2 | sge0cl | |- ( ph -> ( sum^ ` F ) e. ( 0 [,] +oo ) ) |
| 8 | iccgelb | |- ( ( 0 e. RR* /\ +oo e. RR* /\ ( sum^ ` F ) e. ( 0 [,] +oo ) ) -> 0 <_ ( sum^ ` F ) ) |
|
| 9 | 4 6 7 8 | syl3anc | |- ( ph -> 0 <_ ( sum^ ` F ) ) |