Metamath Proof Explorer


Theorem sge0xrcl

Description: The arbitrary sum of nonnegative extended reals is an extended real. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses sge0xrcl.x
|- ( ph -> X e. V )
sge0xrcl.f
|- ( ph -> F : X --> ( 0 [,] +oo ) )
Assertion sge0xrcl
|- ( ph -> ( sum^ ` F ) e. RR* )

Proof

Step Hyp Ref Expression
1 sge0xrcl.x
 |-  ( ph -> X e. V )
2 sge0xrcl.f
 |-  ( ph -> F : X --> ( 0 [,] +oo ) )
3 iccssxr
 |-  ( 0 [,] +oo ) C_ RR*
4 1 2 sge0cl
 |-  ( ph -> ( sum^ ` F ) e. ( 0 [,] +oo ) )
5 3 4 sselid
 |-  ( ph -> ( sum^ ` F ) e. RR* )