Metamath Proof Explorer


Theorem sge0xrcl

Description: The arbitrary sum of nonnegative extended reals is an extended real. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses sge0xrcl.x φ X V
sge0xrcl.f φ F : X 0 +∞
Assertion sge0xrcl φ sum^ F *

Proof

Step Hyp Ref Expression
1 sge0xrcl.x φ X V
2 sge0xrcl.f φ F : X 0 +∞
3 iccssxr 0 +∞ *
4 1 2 sge0cl φ sum^ F 0 +∞
5 3 4 sselid φ sum^ F *