Metamath Proof Explorer


Theorem sge0xrcl

Description: The arbitrary sum of nonnegative extended reals is an extended real. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses sge0xrcl.x φXV
sge0xrcl.f φF:X0+∞
Assertion sge0xrcl φsum^F*

Proof

Step Hyp Ref Expression
1 sge0xrcl.x φXV
2 sge0xrcl.f φF:X0+∞
3 iccssxr 0+∞*
4 1 2 sge0cl φsum^F0+∞
5 3 4 sselid φsum^F*