Metamath Proof Explorer


Theorem sge0xrcl

Description: The arbitrary sum of nonnegative extended reals is an extended real. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses sge0xrcl.x ( 𝜑𝑋𝑉 )
sge0xrcl.f ( 𝜑𝐹 : 𝑋 ⟶ ( 0 [,] +∞ ) )
Assertion sge0xrcl ( 𝜑 → ( Σ^𝐹 ) ∈ ℝ* )

Proof

Step Hyp Ref Expression
1 sge0xrcl.x ( 𝜑𝑋𝑉 )
2 sge0xrcl.f ( 𝜑𝐹 : 𝑋 ⟶ ( 0 [,] +∞ ) )
3 iccssxr ( 0 [,] +∞ ) ⊆ ℝ*
4 1 2 sge0cl ( 𝜑 → ( Σ^𝐹 ) ∈ ( 0 [,] +∞ ) )
5 3 4 sselid ( 𝜑 → ( Σ^𝐹 ) ∈ ℝ* )