Metamath Proof Explorer


Theorem sge0repnf

Description: The of nonnegative extended reals is a real number if and only if it is not +oo . (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses sge0repnf.x ( 𝜑𝑋𝑉 )
sge0repnf.f ( 𝜑𝐹 : 𝑋 ⟶ ( 0 [,] +∞ ) )
Assertion sge0repnf ( 𝜑 → ( ( Σ^𝐹 ) ∈ ℝ ↔ ¬ ( Σ^𝐹 ) = +∞ ) )

Proof

Step Hyp Ref Expression
1 sge0repnf.x ( 𝜑𝑋𝑉 )
2 sge0repnf.f ( 𝜑𝐹 : 𝑋 ⟶ ( 0 [,] +∞ ) )
3 renepnf ( ( Σ^𝐹 ) ∈ ℝ → ( Σ^𝐹 ) ≠ +∞ )
4 3 neneqd ( ( Σ^𝐹 ) ∈ ℝ → ¬ ( Σ^𝐹 ) = +∞ )
5 4 a1i ( 𝜑 → ( ( Σ^𝐹 ) ∈ ℝ → ¬ ( Σ^𝐹 ) = +∞ ) )
6 rge0ssre ( 0 [,) +∞ ) ⊆ ℝ
7 0xr 0 ∈ ℝ*
8 7 a1i ( ( 𝜑 ∧ ¬ ( Σ^𝐹 ) = +∞ ) → 0 ∈ ℝ* )
9 pnfxr +∞ ∈ ℝ*
10 9 a1i ( ( 𝜑 ∧ ¬ ( Σ^𝐹 ) = +∞ ) → +∞ ∈ ℝ* )
11 1 2 sge0xrcl ( 𝜑 → ( Σ^𝐹 ) ∈ ℝ* )
12 11 adantr ( ( 𝜑 ∧ ¬ ( Σ^𝐹 ) = +∞ ) → ( Σ^𝐹 ) ∈ ℝ* )
13 1 2 sge0ge0 ( 𝜑 → 0 ≤ ( Σ^𝐹 ) )
14 13 adantr ( ( 𝜑 ∧ ¬ ( Σ^𝐹 ) = +∞ ) → 0 ≤ ( Σ^𝐹 ) )
15 simpr ( ( 𝜑 ∧ ¬ ( Σ^𝐹 ) = +∞ ) → ¬ ( Σ^𝐹 ) = +∞ )
16 nltpnft ( ( Σ^𝐹 ) ∈ ℝ* → ( ( Σ^𝐹 ) = +∞ ↔ ¬ ( Σ^𝐹 ) < +∞ ) )
17 11 16 syl ( 𝜑 → ( ( Σ^𝐹 ) = +∞ ↔ ¬ ( Σ^𝐹 ) < +∞ ) )
18 17 adantr ( ( 𝜑 ∧ ¬ ( Σ^𝐹 ) = +∞ ) → ( ( Σ^𝐹 ) = +∞ ↔ ¬ ( Σ^𝐹 ) < +∞ ) )
19 15 18 mtbid ( ( 𝜑 ∧ ¬ ( Σ^𝐹 ) = +∞ ) → ¬ ¬ ( Σ^𝐹 ) < +∞ )
20 19 notnotrd ( ( 𝜑 ∧ ¬ ( Σ^𝐹 ) = +∞ ) → ( Σ^𝐹 ) < +∞ )
21 8 10 12 14 20 elicod ( ( 𝜑 ∧ ¬ ( Σ^𝐹 ) = +∞ ) → ( Σ^𝐹 ) ∈ ( 0 [,) +∞ ) )
22 6 21 sselid ( ( 𝜑 ∧ ¬ ( Σ^𝐹 ) = +∞ ) → ( Σ^𝐹 ) ∈ ℝ )
23 22 ex ( 𝜑 → ( ¬ ( Σ^𝐹 ) = +∞ → ( Σ^𝐹 ) ∈ ℝ ) )
24 5 23 impbid ( 𝜑 → ( ( Σ^𝐹 ) ∈ ℝ ↔ ¬ ( Σ^𝐹 ) = +∞ ) )