Step |
Hyp |
Ref |
Expression |
1 |
|
sge0repnf.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
2 |
|
sge0repnf.f |
⊢ ( 𝜑 → 𝐹 : 𝑋 ⟶ ( 0 [,] +∞ ) ) |
3 |
|
renepnf |
⊢ ( ( Σ^ ‘ 𝐹 ) ∈ ℝ → ( Σ^ ‘ 𝐹 ) ≠ +∞ ) |
4 |
3
|
neneqd |
⊢ ( ( Σ^ ‘ 𝐹 ) ∈ ℝ → ¬ ( Σ^ ‘ 𝐹 ) = +∞ ) |
5 |
4
|
a1i |
⊢ ( 𝜑 → ( ( Σ^ ‘ 𝐹 ) ∈ ℝ → ¬ ( Σ^ ‘ 𝐹 ) = +∞ ) ) |
6 |
|
rge0ssre |
⊢ ( 0 [,) +∞ ) ⊆ ℝ |
7 |
|
0xr |
⊢ 0 ∈ ℝ* |
8 |
7
|
a1i |
⊢ ( ( 𝜑 ∧ ¬ ( Σ^ ‘ 𝐹 ) = +∞ ) → 0 ∈ ℝ* ) |
9 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
10 |
9
|
a1i |
⊢ ( ( 𝜑 ∧ ¬ ( Σ^ ‘ 𝐹 ) = +∞ ) → +∞ ∈ ℝ* ) |
11 |
1 2
|
sge0xrcl |
⊢ ( 𝜑 → ( Σ^ ‘ 𝐹 ) ∈ ℝ* ) |
12 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ ( Σ^ ‘ 𝐹 ) = +∞ ) → ( Σ^ ‘ 𝐹 ) ∈ ℝ* ) |
13 |
1 2
|
sge0ge0 |
⊢ ( 𝜑 → 0 ≤ ( Σ^ ‘ 𝐹 ) ) |
14 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ ( Σ^ ‘ 𝐹 ) = +∞ ) → 0 ≤ ( Σ^ ‘ 𝐹 ) ) |
15 |
|
simpr |
⊢ ( ( 𝜑 ∧ ¬ ( Σ^ ‘ 𝐹 ) = +∞ ) → ¬ ( Σ^ ‘ 𝐹 ) = +∞ ) |
16 |
|
nltpnft |
⊢ ( ( Σ^ ‘ 𝐹 ) ∈ ℝ* → ( ( Σ^ ‘ 𝐹 ) = +∞ ↔ ¬ ( Σ^ ‘ 𝐹 ) < +∞ ) ) |
17 |
11 16
|
syl |
⊢ ( 𝜑 → ( ( Σ^ ‘ 𝐹 ) = +∞ ↔ ¬ ( Σ^ ‘ 𝐹 ) < +∞ ) ) |
18 |
17
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ ( Σ^ ‘ 𝐹 ) = +∞ ) → ( ( Σ^ ‘ 𝐹 ) = +∞ ↔ ¬ ( Σ^ ‘ 𝐹 ) < +∞ ) ) |
19 |
15 18
|
mtbid |
⊢ ( ( 𝜑 ∧ ¬ ( Σ^ ‘ 𝐹 ) = +∞ ) → ¬ ¬ ( Σ^ ‘ 𝐹 ) < +∞ ) |
20 |
19
|
notnotrd |
⊢ ( ( 𝜑 ∧ ¬ ( Σ^ ‘ 𝐹 ) = +∞ ) → ( Σ^ ‘ 𝐹 ) < +∞ ) |
21 |
8 10 12 14 20
|
elicod |
⊢ ( ( 𝜑 ∧ ¬ ( Σ^ ‘ 𝐹 ) = +∞ ) → ( Σ^ ‘ 𝐹 ) ∈ ( 0 [,) +∞ ) ) |
22 |
6 21
|
sselid |
⊢ ( ( 𝜑 ∧ ¬ ( Σ^ ‘ 𝐹 ) = +∞ ) → ( Σ^ ‘ 𝐹 ) ∈ ℝ ) |
23 |
22
|
ex |
⊢ ( 𝜑 → ( ¬ ( Σ^ ‘ 𝐹 ) = +∞ → ( Σ^ ‘ 𝐹 ) ∈ ℝ ) ) |
24 |
5 23
|
impbid |
⊢ ( 𝜑 → ( ( Σ^ ‘ 𝐹 ) ∈ ℝ ↔ ¬ ( Σ^ ‘ 𝐹 ) = +∞ ) ) |