| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sge0repnf.x |
|- ( ph -> X e. V ) |
| 2 |
|
sge0repnf.f |
|- ( ph -> F : X --> ( 0 [,] +oo ) ) |
| 3 |
|
renepnf |
|- ( ( sum^ ` F ) e. RR -> ( sum^ ` F ) =/= +oo ) |
| 4 |
3
|
neneqd |
|- ( ( sum^ ` F ) e. RR -> -. ( sum^ ` F ) = +oo ) |
| 5 |
4
|
a1i |
|- ( ph -> ( ( sum^ ` F ) e. RR -> -. ( sum^ ` F ) = +oo ) ) |
| 6 |
|
rge0ssre |
|- ( 0 [,) +oo ) C_ RR |
| 7 |
|
0xr |
|- 0 e. RR* |
| 8 |
7
|
a1i |
|- ( ( ph /\ -. ( sum^ ` F ) = +oo ) -> 0 e. RR* ) |
| 9 |
|
pnfxr |
|- +oo e. RR* |
| 10 |
9
|
a1i |
|- ( ( ph /\ -. ( sum^ ` F ) = +oo ) -> +oo e. RR* ) |
| 11 |
1 2
|
sge0xrcl |
|- ( ph -> ( sum^ ` F ) e. RR* ) |
| 12 |
11
|
adantr |
|- ( ( ph /\ -. ( sum^ ` F ) = +oo ) -> ( sum^ ` F ) e. RR* ) |
| 13 |
1 2
|
sge0ge0 |
|- ( ph -> 0 <_ ( sum^ ` F ) ) |
| 14 |
13
|
adantr |
|- ( ( ph /\ -. ( sum^ ` F ) = +oo ) -> 0 <_ ( sum^ ` F ) ) |
| 15 |
|
simpr |
|- ( ( ph /\ -. ( sum^ ` F ) = +oo ) -> -. ( sum^ ` F ) = +oo ) |
| 16 |
|
nltpnft |
|- ( ( sum^ ` F ) e. RR* -> ( ( sum^ ` F ) = +oo <-> -. ( sum^ ` F ) < +oo ) ) |
| 17 |
11 16
|
syl |
|- ( ph -> ( ( sum^ ` F ) = +oo <-> -. ( sum^ ` F ) < +oo ) ) |
| 18 |
17
|
adantr |
|- ( ( ph /\ -. ( sum^ ` F ) = +oo ) -> ( ( sum^ ` F ) = +oo <-> -. ( sum^ ` F ) < +oo ) ) |
| 19 |
15 18
|
mtbid |
|- ( ( ph /\ -. ( sum^ ` F ) = +oo ) -> -. -. ( sum^ ` F ) < +oo ) |
| 20 |
19
|
notnotrd |
|- ( ( ph /\ -. ( sum^ ` F ) = +oo ) -> ( sum^ ` F ) < +oo ) |
| 21 |
8 10 12 14 20
|
elicod |
|- ( ( ph /\ -. ( sum^ ` F ) = +oo ) -> ( sum^ ` F ) e. ( 0 [,) +oo ) ) |
| 22 |
6 21
|
sselid |
|- ( ( ph /\ -. ( sum^ ` F ) = +oo ) -> ( sum^ ` F ) e. RR ) |
| 23 |
22
|
ex |
|- ( ph -> ( -. ( sum^ ` F ) = +oo -> ( sum^ ` F ) e. RR ) ) |
| 24 |
5 23
|
impbid |
|- ( ph -> ( ( sum^ ` F ) e. RR <-> -. ( sum^ ` F ) = +oo ) ) |