Metamath Proof Explorer


Theorem sge0repnf

Description: The of nonnegative extended reals is a real number if and only if it is not +oo . (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses sge0repnf.x
|- ( ph -> X e. V )
sge0repnf.f
|- ( ph -> F : X --> ( 0 [,] +oo ) )
Assertion sge0repnf
|- ( ph -> ( ( sum^ ` F ) e. RR <-> -. ( sum^ ` F ) = +oo ) )

Proof

Step Hyp Ref Expression
1 sge0repnf.x
 |-  ( ph -> X e. V )
2 sge0repnf.f
 |-  ( ph -> F : X --> ( 0 [,] +oo ) )
3 renepnf
 |-  ( ( sum^ ` F ) e. RR -> ( sum^ ` F ) =/= +oo )
4 3 neneqd
 |-  ( ( sum^ ` F ) e. RR -> -. ( sum^ ` F ) = +oo )
5 4 a1i
 |-  ( ph -> ( ( sum^ ` F ) e. RR -> -. ( sum^ ` F ) = +oo ) )
6 rge0ssre
 |-  ( 0 [,) +oo ) C_ RR
7 0xr
 |-  0 e. RR*
8 7 a1i
 |-  ( ( ph /\ -. ( sum^ ` F ) = +oo ) -> 0 e. RR* )
9 pnfxr
 |-  +oo e. RR*
10 9 a1i
 |-  ( ( ph /\ -. ( sum^ ` F ) = +oo ) -> +oo e. RR* )
11 1 2 sge0xrcl
 |-  ( ph -> ( sum^ ` F ) e. RR* )
12 11 adantr
 |-  ( ( ph /\ -. ( sum^ ` F ) = +oo ) -> ( sum^ ` F ) e. RR* )
13 1 2 sge0ge0
 |-  ( ph -> 0 <_ ( sum^ ` F ) )
14 13 adantr
 |-  ( ( ph /\ -. ( sum^ ` F ) = +oo ) -> 0 <_ ( sum^ ` F ) )
15 simpr
 |-  ( ( ph /\ -. ( sum^ ` F ) = +oo ) -> -. ( sum^ ` F ) = +oo )
16 nltpnft
 |-  ( ( sum^ ` F ) e. RR* -> ( ( sum^ ` F ) = +oo <-> -. ( sum^ ` F ) < +oo ) )
17 11 16 syl
 |-  ( ph -> ( ( sum^ ` F ) = +oo <-> -. ( sum^ ` F ) < +oo ) )
18 17 adantr
 |-  ( ( ph /\ -. ( sum^ ` F ) = +oo ) -> ( ( sum^ ` F ) = +oo <-> -. ( sum^ ` F ) < +oo ) )
19 15 18 mtbid
 |-  ( ( ph /\ -. ( sum^ ` F ) = +oo ) -> -. -. ( sum^ ` F ) < +oo )
20 19 notnotrd
 |-  ( ( ph /\ -. ( sum^ ` F ) = +oo ) -> ( sum^ ` F ) < +oo )
21 8 10 12 14 20 elicod
 |-  ( ( ph /\ -. ( sum^ ` F ) = +oo ) -> ( sum^ ` F ) e. ( 0 [,) +oo ) )
22 6 21 sselid
 |-  ( ( ph /\ -. ( sum^ ` F ) = +oo ) -> ( sum^ ` F ) e. RR )
23 22 ex
 |-  ( ph -> ( -. ( sum^ ` F ) = +oo -> ( sum^ ` F ) e. RR ) )
24 5 23 impbid
 |-  ( ph -> ( ( sum^ ` F ) e. RR <-> -. ( sum^ ` F ) = +oo ) )