Metamath Proof Explorer


Theorem sge0repnf

Description: The of nonnegative extended reals is a real number if and only if it is not +oo . (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses sge0repnf.x φ X V
sge0repnf.f φ F : X 0 +∞
Assertion sge0repnf φ sum^ F ¬ sum^ F = +∞

Proof

Step Hyp Ref Expression
1 sge0repnf.x φ X V
2 sge0repnf.f φ F : X 0 +∞
3 renepnf sum^ F sum^ F +∞
4 3 neneqd sum^ F ¬ sum^ F = +∞
5 4 a1i φ sum^ F ¬ sum^ F = +∞
6 rge0ssre 0 +∞
7 0xr 0 *
8 7 a1i φ ¬ sum^ F = +∞ 0 *
9 pnfxr +∞ *
10 9 a1i φ ¬ sum^ F = +∞ +∞ *
11 1 2 sge0xrcl φ sum^ F *
12 11 adantr φ ¬ sum^ F = +∞ sum^ F *
13 1 2 sge0ge0 φ 0 sum^ F
14 13 adantr φ ¬ sum^ F = +∞ 0 sum^ F
15 simpr φ ¬ sum^ F = +∞ ¬ sum^ F = +∞
16 nltpnft sum^ F * sum^ F = +∞ ¬ sum^ F < +∞
17 11 16 syl φ sum^ F = +∞ ¬ sum^ F < +∞
18 17 adantr φ ¬ sum^ F = +∞ sum^ F = +∞ ¬ sum^ F < +∞
19 15 18 mtbid φ ¬ sum^ F = +∞ ¬ ¬ sum^ F < +∞
20 19 notnotrd φ ¬ sum^ F = +∞ sum^ F < +∞
21 8 10 12 14 20 elicod φ ¬ sum^ F = +∞ sum^ F 0 +∞
22 6 21 sselid φ ¬ sum^ F = +∞ sum^ F
23 22 ex φ ¬ sum^ F = +∞ sum^ F
24 5 23 impbid φ sum^ F ¬ sum^ F = +∞