| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sge0fsum.x |
|
| 2 |
|
sge0fsum.f |
|
| 3 |
2
|
fge0icoicc |
|
| 4 |
1 3
|
sge0xrcl |
|
| 5 |
|
rge0ssre |
|
| 6 |
2
|
ffvelcdmda |
|
| 7 |
5 6
|
sselid |
|
| 8 |
1 7
|
fsumrecl |
|
| 9 |
8
|
rexrd |
|
| 10 |
1 2
|
sge0reval |
|
| 11 |
|
simpr |
|
| 12 |
|
vex |
|
| 13 |
12
|
a1i |
|
| 14 |
|
eqid |
|
| 15 |
14
|
elrnmpt |
|
| 16 |
13 15
|
syl |
|
| 17 |
11 16
|
mpbid |
|
| 18 |
|
simp3 |
|
| 19 |
1
|
adantr |
|
| 20 |
2
|
fge0npnf |
|
| 21 |
3 20
|
fge0iccre |
|
| 22 |
21
|
adantr |
|
| 23 |
22
|
adantr |
|
| 24 |
|
simpr |
|
| 25 |
23 24
|
ffvelcdmd |
|
| 26 |
|
0xr |
|
| 27 |
26
|
a1i |
|
| 28 |
|
pnfxr |
|
| 29 |
28
|
a1i |
|
| 30 |
3
|
adantr |
|
| 31 |
30
|
ffvelcdmda |
|
| 32 |
|
iccgelb |
|
| 33 |
27 29 31 32
|
syl3anc |
|
| 34 |
|
elinel1 |
|
| 35 |
|
elpwi |
|
| 36 |
34 35
|
syl |
|
| 37 |
36
|
adantl |
|
| 38 |
19 25 33 37
|
fsumless |
|
| 39 |
38
|
3adant3 |
|
| 40 |
18 39
|
eqbrtrd |
|
| 41 |
40
|
3exp |
|
| 42 |
41
|
rexlimdv |
|
| 43 |
42
|
adantr |
|
| 44 |
17 43
|
mpd |
|
| 45 |
44
|
ralrimiva |
|
| 46 |
|
elinel2 |
|
| 47 |
46
|
adantl |
|
| 48 |
22
|
adantr |
|
| 49 |
37
|
sselda |
|
| 50 |
48 49
|
ffvelcdmd |
|
| 51 |
47 50
|
fsumrecl |
|
| 52 |
51
|
rexrd |
|
| 53 |
52
|
ralrimiva |
|
| 54 |
14
|
rnmptss |
|
| 55 |
53 54
|
syl |
|
| 56 |
|
supxrleub |
|
| 57 |
55 9 56
|
syl2anc |
|
| 58 |
45 57
|
mpbird |
|
| 59 |
10 58
|
eqbrtrd |
|
| 60 |
|
ssid |
|
| 61 |
60
|
a1i |
|
| 62 |
1 2 61 1
|
fsumlesge0 |
|
| 63 |
4 9 59 62
|
xrletrid |
|