Step |
Hyp |
Ref |
Expression |
1 |
|
sge0fsum.x |
|
2 |
|
sge0fsum.f |
|
3 |
2
|
fge0icoicc |
|
4 |
1 3
|
sge0xrcl |
|
5 |
|
rge0ssre |
|
6 |
2
|
ffvelrnda |
|
7 |
5 6
|
sselid |
|
8 |
1 7
|
fsumrecl |
|
9 |
8
|
rexrd |
|
10 |
1 2
|
sge0reval |
|
11 |
|
simpr |
|
12 |
|
vex |
|
13 |
12
|
a1i |
|
14 |
|
eqid |
|
15 |
14
|
elrnmpt |
|
16 |
13 15
|
syl |
|
17 |
11 16
|
mpbid |
|
18 |
|
simp3 |
|
19 |
1
|
adantr |
|
20 |
2
|
fge0npnf |
|
21 |
3 20
|
fge0iccre |
|
22 |
21
|
adantr |
|
23 |
22
|
adantr |
|
24 |
|
simpr |
|
25 |
23 24
|
ffvelrnd |
|
26 |
|
0xr |
|
27 |
26
|
a1i |
|
28 |
|
pnfxr |
|
29 |
28
|
a1i |
|
30 |
3
|
adantr |
|
31 |
30
|
ffvelrnda |
|
32 |
|
iccgelb |
|
33 |
27 29 31 32
|
syl3anc |
|
34 |
|
elinel1 |
|
35 |
|
elpwi |
|
36 |
34 35
|
syl |
|
37 |
36
|
adantl |
|
38 |
19 25 33 37
|
fsumless |
|
39 |
38
|
3adant3 |
|
40 |
18 39
|
eqbrtrd |
|
41 |
40
|
3exp |
|
42 |
41
|
rexlimdv |
|
43 |
42
|
adantr |
|
44 |
17 43
|
mpd |
|
45 |
44
|
ralrimiva |
|
46 |
|
elinel2 |
|
47 |
46
|
adantl |
|
48 |
22
|
adantr |
|
49 |
37
|
sselda |
|
50 |
48 49
|
ffvelrnd |
|
51 |
47 50
|
fsumrecl |
|
52 |
51
|
rexrd |
|
53 |
52
|
ralrimiva |
|
54 |
14
|
rnmptss |
|
55 |
53 54
|
syl |
|
56 |
|
supxrleub |
|
57 |
55 9 56
|
syl2anc |
|
58 |
45 57
|
mpbird |
|
59 |
10 58
|
eqbrtrd |
|
60 |
|
ssid |
|
61 |
60
|
a1i |
|
62 |
1 2 61 1
|
fsumlesge0 |
|
63 |
4 9 59 62
|
xrletrid |
|