Metamath Proof Explorer


Theorem sge0rern

Description: If the sum of nonnegative extended reals is not +oo then no terms is +oo . (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses sge0rern.x φ X V
sge0rern.f φ F : X 0 +∞
sge0rern.re φ sum^ F
Assertion sge0rern φ ¬ +∞ ran F

Proof

Step Hyp Ref Expression
1 sge0rern.x φ X V
2 sge0rern.f φ F : X 0 +∞
3 sge0rern.re φ sum^ F
4 1 adantr φ +∞ ran F X V
5 2 adantr φ +∞ ran F F : X 0 +∞
6 simpr φ +∞ ran F +∞ ran F
7 4 5 6 sge0pnfval φ +∞ ran F sum^ F = +∞
8 3 adantr φ +∞ ran F sum^ F
9 4 5 sge0repnf φ +∞ ran F sum^ F ¬ sum^ F = +∞
10 8 9 mpbid φ +∞ ran F ¬ sum^ F = +∞
11 7 10 pm2.65da φ ¬ +∞ ran F