Metamath Proof Explorer


Theorem sge0rern

Description: If the sum of nonnegative extended reals is not +oo then no terms is +oo . (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses sge0rern.x φXV
sge0rern.f φF:X0+∞
sge0rern.re φsum^F
Assertion sge0rern φ¬+∞ranF

Proof

Step Hyp Ref Expression
1 sge0rern.x φXV
2 sge0rern.f φF:X0+∞
3 sge0rern.re φsum^F
4 1 adantr φ+∞ranFXV
5 2 adantr φ+∞ranFF:X0+∞
6 simpr φ+∞ranF+∞ranF
7 4 5 6 sge0pnfval φ+∞ranFsum^F=+∞
8 3 adantr φ+∞ranFsum^F
9 4 5 sge0repnf φ+∞ranFsum^F¬sum^F=+∞
10 8 9 mpbid φ+∞ranF¬sum^F=+∞
11 7 10 pm2.65da φ¬+∞ranF