| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sge0supre.x |
|
| 2 |
|
sge0supre.f |
|
| 3 |
|
sge0supre.re |
|
| 4 |
1
|
adantr |
|
| 5 |
2
|
adantr |
|
| 6 |
|
simpr |
|
| 7 |
4 5 6
|
sge0pnfval |
|
| 8 |
1 2
|
sge0repnf |
|
| 9 |
3 8
|
mpbid |
|
| 10 |
9
|
adantr |
|
| 11 |
7 10
|
pm2.65da |
|
| 12 |
2 11
|
fge0iccico |
|
| 13 |
1 12
|
sge0reval |
|
| 14 |
12
|
sge0rnre |
|
| 15 |
|
sge0rnn0 |
|
| 16 |
15
|
a1i |
|
| 17 |
|
simpr |
|
| 18 |
|
eqid |
|
| 19 |
18
|
elrnmpt |
|
| 20 |
19
|
adantl |
|
| 21 |
17 20
|
mpbid |
|
| 22 |
|
simp3 |
|
| 23 |
|
ressxr |
|
| 24 |
23
|
a1i |
|
| 25 |
14 24
|
sstrd |
|
| 26 |
25
|
adantr |
|
| 27 |
|
id |
|
| 28 |
|
sumex |
|
| 29 |
28
|
a1i |
|
| 30 |
18
|
elrnmpt1 |
|
| 31 |
27 29 30
|
syl2anc |
|
| 32 |
31
|
adantl |
|
| 33 |
|
supxrub |
|
| 34 |
26 32 33
|
syl2anc |
|
| 35 |
13
|
eqcomd |
|
| 36 |
35
|
adantr |
|
| 37 |
34 36
|
breqtrd |
|
| 38 |
37
|
3adant3 |
|
| 39 |
22 38
|
eqbrtrd |
|
| 40 |
39
|
3exp |
|
| 41 |
40
|
rexlimdv |
|
| 42 |
41
|
adantr |
|
| 43 |
21 42
|
mpd |
|
| 44 |
43
|
ralrimiva |
|
| 45 |
|
brralrspcev |
|
| 46 |
3 44 45
|
syl2anc |
|
| 47 |
|
supxrre |
|
| 48 |
14 16 46 47
|
syl3anc |
|
| 49 |
13 48
|
eqtrd |
|