Description: The real and extended real suprema match when the real supremum exists. (Contributed by NM, 18-Oct-2005) (Proof shortened by Mario Carneiro, 7-Sep-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | supxrre | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 | |
|
2 | ressxr | |
|
3 | 1 2 | sstrdi | |
4 | supxrcl | |
|
5 | 3 4 | syl | |
6 | suprcl | |
|
7 | 6 | rexrd | |
8 | 6 | leidd | |
9 | suprleub | |
|
10 | 6 9 | mpdan | |
11 | supxrleub | |
|
12 | 3 7 11 | syl2anc | |
13 | 10 12 | bitr4d | |
14 | 8 13 | mpbid | |
15 | 5 | xrleidd | |
16 | supxrleub | |
|
17 | 3 5 16 | syl2anc | |
18 | simp2 | |
|
19 | n0 | |
|
20 | 18 19 | sylib | |
21 | mnfxr | |
|
22 | 21 | a1i | |
23 | 1 | sselda | |
24 | 23 | rexrd | |
25 | 5 | adantr | |
26 | 23 | mnfltd | |
27 | supxrub | |
|
28 | 3 27 | sylan | |
29 | 22 24 25 26 28 | xrltletrd | |
30 | 20 29 | exlimddv | |
31 | xrre | |
|
32 | 5 6 30 14 31 | syl22anc | |
33 | suprleub | |
|
34 | 32 33 | mpdan | |
35 | 17 34 | bitr4d | |
36 | 15 35 | mpbid | |
37 | 5 7 14 36 | xrletrid | |