Metamath Proof Explorer


Theorem supxrre

Description: The real and extended real suprema match when the real supremum exists. (Contributed by NM, 18-Oct-2005) (Proof shortened by Mario Carneiro, 7-Sep-2014)

Ref Expression
Assertion supxrre AAxyAyxsupA*<=supA<

Proof

Step Hyp Ref Expression
1 simp1 AAxyAyxA
2 ressxr *
3 1 2 sstrdi AAxyAyxA*
4 supxrcl A*supA*<*
5 3 4 syl AAxyAyxsupA*<*
6 suprcl AAxyAyxsupA<
7 6 rexrd AAxyAyxsupA<*
8 6 leidd AAxyAyxsupA<supA<
9 suprleub AAxyAyxsupA<supA<supA<zAzsupA<
10 6 9 mpdan AAxyAyxsupA<supA<zAzsupA<
11 supxrleub A*supA<*supA*<supA<zAzsupA<
12 3 7 11 syl2anc AAxyAyxsupA*<supA<zAzsupA<
13 10 12 bitr4d AAxyAyxsupA<supA<supA*<supA<
14 8 13 mpbid AAxyAyxsupA*<supA<
15 5 xrleidd AAxyAyxsupA*<supA*<
16 supxrleub A*supA*<*supA*<supA*<xAxsupA*<
17 3 5 16 syl2anc AAxyAyxsupA*<supA*<xAxsupA*<
18 simp2 AAxyAyxA
19 n0 AzzA
20 18 19 sylib AAxyAyxzzA
21 mnfxr −∞*
22 21 a1i AAxyAyxzA−∞*
23 1 sselda AAxyAyxzAz
24 23 rexrd AAxyAyxzAz*
25 5 adantr AAxyAyxzAsupA*<*
26 23 mnfltd AAxyAyxzA−∞<z
27 supxrub A*zAzsupA*<
28 3 27 sylan AAxyAyxzAzsupA*<
29 22 24 25 26 28 xrltletrd AAxyAyxzA−∞<supA*<
30 20 29 exlimddv AAxyAyx−∞<supA*<
31 xrre supA*<*supA<−∞<supA*<supA*<supA<supA*<
32 5 6 30 14 31 syl22anc AAxyAyxsupA*<
33 suprleub AAxyAyxsupA*<supA<supA*<xAxsupA*<
34 32 33 mpdan AAxyAyxsupA<supA*<xAxsupA*<
35 17 34 bitr4d AAxyAyxsupA*<supA*<supA<supA*<
36 15 35 mpbid AAxyAyxsupA<supA*<
37 5 7 14 36 xrletrid AAxyAyxsupA*<=supA<