Metamath Proof Explorer


Theorem elrnmpt1

Description: Elementhood in an image set. (Contributed by Mario Carneiro, 31-Aug-2015)

Ref Expression
Hypothesis rnmpt.1 F = x A B
Assertion elrnmpt1 x A B V B ran F

Proof

Step Hyp Ref Expression
1 rnmpt.1 F = x A B
2 vex x V
3 id x = z x = z
4 csbeq1a x = z A = z / x A
5 3 4 eleq12d x = z x A z z / x A
6 csbeq1a x = z B = z / x B
7 6 biantrud x = z z z / x A z z / x A B = z / x B
8 5 7 bitr2d x = z z z / x A B = z / x B x A
9 8 equcoms z = x z z / x A B = z / x B x A
10 2 9 spcev x A z z z / x A B = z / x B
11 df-rex x A y = B x x A y = B
12 nfv z x A y = B
13 nfcsb1v _ x z / x A
14 13 nfcri x z z / x A
15 nfcsb1v _ x z / x B
16 15 nfeq2 x y = z / x B
17 14 16 nfan x z z / x A y = z / x B
18 6 eqeq2d x = z y = B y = z / x B
19 5 18 anbi12d x = z x A y = B z z / x A y = z / x B
20 12 17 19 cbvexv1 x x A y = B z z z / x A y = z / x B
21 11 20 bitri x A y = B z z z / x A y = z / x B
22 eqeq1 y = B y = z / x B B = z / x B
23 22 anbi2d y = B z z / x A y = z / x B z z / x A B = z / x B
24 23 exbidv y = B z z z / x A y = z / x B z z z / x A B = z / x B
25 21 24 bitrid y = B x A y = B z z z / x A B = z / x B
26 1 rnmpt ran F = y | x A y = B
27 25 26 elab2g B V B ran F z z z / x A B = z / x B
28 10 27 syl5ibr B V x A B ran F
29 28 impcom x A B V B ran F