Metamath Proof Explorer


Theorem sge0fsummpt

Description: The arbitrary sum of a finite set of nonnegative extended real numbers is equal to the sum of those numbers, when none of them is +oo (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses sge0fsummpt.a φ A Fin
sge0fsummpt.b φ k A B 0 +∞
Assertion sge0fsummpt φ sum^ k A B = k A B

Proof

Step Hyp Ref Expression
1 sge0fsummpt.a φ A Fin
2 sge0fsummpt.b φ k A B 0 +∞
3 eqid k A B = k A B
4 2 3 fmptd φ k A B : A 0 +∞
5 1 4 sge0fsum φ sum^ k A B = j A k A B j
6 fveq2 j = k k A B j = k A B k
7 nfcv _ k A
8 nfcv _ j A
9 nfmpt1 _ k k A B
10 nfcv _ k j
11 9 10 nffv _ k k A B j
12 nfcv _ j k A B k
13 6 7 8 11 12 cbvsum j A k A B j = k A k A B k
14 13 a1i φ j A k A B j = k A k A B k
15 simpr φ k A k A
16 3 fvmpt2 k A B 0 +∞ k A B k = B
17 15 2 16 syl2anc φ k A k A B k = B
18 17 sumeq2dv φ k A k A B k = k A B
19 5 14 18 3eqtrd φ sum^ k A B = k A B