| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sge0fsummpt.a |
|- ( ph -> A e. Fin ) |
| 2 |
|
sge0fsummpt.b |
|- ( ( ph /\ k e. A ) -> B e. ( 0 [,) +oo ) ) |
| 3 |
|
eqid |
|- ( k e. A |-> B ) = ( k e. A |-> B ) |
| 4 |
2 3
|
fmptd |
|- ( ph -> ( k e. A |-> B ) : A --> ( 0 [,) +oo ) ) |
| 5 |
1 4
|
sge0fsum |
|- ( ph -> ( sum^ ` ( k e. A |-> B ) ) = sum_ j e. A ( ( k e. A |-> B ) ` j ) ) |
| 6 |
|
fveq2 |
|- ( j = k -> ( ( k e. A |-> B ) ` j ) = ( ( k e. A |-> B ) ` k ) ) |
| 7 |
|
nfmpt1 |
|- F/_ k ( k e. A |-> B ) |
| 8 |
|
nfcv |
|- F/_ k j |
| 9 |
7 8
|
nffv |
|- F/_ k ( ( k e. A |-> B ) ` j ) |
| 10 |
|
nfcv |
|- F/_ j ( ( k e. A |-> B ) ` k ) |
| 11 |
6 9 10
|
cbvsum |
|- sum_ j e. A ( ( k e. A |-> B ) ` j ) = sum_ k e. A ( ( k e. A |-> B ) ` k ) |
| 12 |
11
|
a1i |
|- ( ph -> sum_ j e. A ( ( k e. A |-> B ) ` j ) = sum_ k e. A ( ( k e. A |-> B ) ` k ) ) |
| 13 |
|
simpr |
|- ( ( ph /\ k e. A ) -> k e. A ) |
| 14 |
3
|
fvmpt2 |
|- ( ( k e. A /\ B e. ( 0 [,) +oo ) ) -> ( ( k e. A |-> B ) ` k ) = B ) |
| 15 |
13 2 14
|
syl2anc |
|- ( ( ph /\ k e. A ) -> ( ( k e. A |-> B ) ` k ) = B ) |
| 16 |
15
|
sumeq2dv |
|- ( ph -> sum_ k e. A ( ( k e. A |-> B ) ` k ) = sum_ k e. A B ) |
| 17 |
5 12 16
|
3eqtrd |
|- ( ph -> ( sum^ ` ( k e. A |-> B ) ) = sum_ k e. A B ) |