Metamath Proof Explorer


Theorem sge0fsummpt

Description: The arbitrary sum of a finite set of nonnegative extended real numbers is equal to the sum of those numbers, when none of them is +oo (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses sge0fsummpt.a ( 𝜑𝐴 ∈ Fin )
sge0fsummpt.b ( ( 𝜑𝑘𝐴 ) → 𝐵 ∈ ( 0 [,) +∞ ) )
Assertion sge0fsummpt ( 𝜑 → ( Σ^ ‘ ( 𝑘𝐴𝐵 ) ) = Σ 𝑘𝐴 𝐵 )

Proof

Step Hyp Ref Expression
1 sge0fsummpt.a ( 𝜑𝐴 ∈ Fin )
2 sge0fsummpt.b ( ( 𝜑𝑘𝐴 ) → 𝐵 ∈ ( 0 [,) +∞ ) )
3 eqid ( 𝑘𝐴𝐵 ) = ( 𝑘𝐴𝐵 )
4 2 3 fmptd ( 𝜑 → ( 𝑘𝐴𝐵 ) : 𝐴 ⟶ ( 0 [,) +∞ ) )
5 1 4 sge0fsum ( 𝜑 → ( Σ^ ‘ ( 𝑘𝐴𝐵 ) ) = Σ 𝑗𝐴 ( ( 𝑘𝐴𝐵 ) ‘ 𝑗 ) )
6 fveq2 ( 𝑗 = 𝑘 → ( ( 𝑘𝐴𝐵 ) ‘ 𝑗 ) = ( ( 𝑘𝐴𝐵 ) ‘ 𝑘 ) )
7 nfcv 𝑘 𝐴
8 nfcv 𝑗 𝐴
9 nfmpt1 𝑘 ( 𝑘𝐴𝐵 )
10 nfcv 𝑘 𝑗
11 9 10 nffv 𝑘 ( ( 𝑘𝐴𝐵 ) ‘ 𝑗 )
12 nfcv 𝑗 ( ( 𝑘𝐴𝐵 ) ‘ 𝑘 )
13 6 7 8 11 12 cbvsum Σ 𝑗𝐴 ( ( 𝑘𝐴𝐵 ) ‘ 𝑗 ) = Σ 𝑘𝐴 ( ( 𝑘𝐴𝐵 ) ‘ 𝑘 )
14 13 a1i ( 𝜑 → Σ 𝑗𝐴 ( ( 𝑘𝐴𝐵 ) ‘ 𝑗 ) = Σ 𝑘𝐴 ( ( 𝑘𝐴𝐵 ) ‘ 𝑘 ) )
15 simpr ( ( 𝜑𝑘𝐴 ) → 𝑘𝐴 )
16 3 fvmpt2 ( ( 𝑘𝐴𝐵 ∈ ( 0 [,) +∞ ) ) → ( ( 𝑘𝐴𝐵 ) ‘ 𝑘 ) = 𝐵 )
17 15 2 16 syl2anc ( ( 𝜑𝑘𝐴 ) → ( ( 𝑘𝐴𝐵 ) ‘ 𝑘 ) = 𝐵 )
18 17 sumeq2dv ( 𝜑 → Σ 𝑘𝐴 ( ( 𝑘𝐴𝐵 ) ‘ 𝑘 ) = Σ 𝑘𝐴 𝐵 )
19 5 14 18 3eqtrd ( 𝜑 → ( Σ^ ‘ ( 𝑘𝐴𝐵 ) ) = Σ 𝑘𝐴 𝐵 )