Step |
Hyp |
Ref |
Expression |
1 |
|
sge0fsummpt.a |
⊢ ( 𝜑 → 𝐴 ∈ Fin ) |
2 |
|
sge0fsummpt.b |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ( 0 [,) +∞ ) ) |
3 |
|
eqid |
⊢ ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) |
4 |
2 3
|
fmptd |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) : 𝐴 ⟶ ( 0 [,) +∞ ) ) |
5 |
1 4
|
sge0fsum |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ) = Σ 𝑗 ∈ 𝐴 ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑗 ) ) |
6 |
|
fveq2 |
⊢ ( 𝑗 = 𝑘 → ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑗 ) = ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑘 ) ) |
7 |
|
nfcv |
⊢ Ⅎ 𝑘 𝐴 |
8 |
|
nfcv |
⊢ Ⅎ 𝑗 𝐴 |
9 |
|
nfmpt1 |
⊢ Ⅎ 𝑘 ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) |
10 |
|
nfcv |
⊢ Ⅎ 𝑘 𝑗 |
11 |
9 10
|
nffv |
⊢ Ⅎ 𝑘 ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑗 ) |
12 |
|
nfcv |
⊢ Ⅎ 𝑗 ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑘 ) |
13 |
6 7 8 11 12
|
cbvsum |
⊢ Σ 𝑗 ∈ 𝐴 ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑗 ) = Σ 𝑘 ∈ 𝐴 ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑘 ) |
14 |
13
|
a1i |
⊢ ( 𝜑 → Σ 𝑗 ∈ 𝐴 ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑗 ) = Σ 𝑘 ∈ 𝐴 ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑘 ) ) |
15 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝑘 ∈ 𝐴 ) |
16 |
3
|
fvmpt2 |
⊢ ( ( 𝑘 ∈ 𝐴 ∧ 𝐵 ∈ ( 0 [,) +∞ ) ) → ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑘 ) = 𝐵 ) |
17 |
15 2 16
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑘 ) = 𝐵 ) |
18 |
17
|
sumeq2dv |
⊢ ( 𝜑 → Σ 𝑘 ∈ 𝐴 ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑘 ) = Σ 𝑘 ∈ 𝐴 𝐵 ) |
19 |
5 14 18
|
3eqtrd |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ) = Σ 𝑘 ∈ 𝐴 𝐵 ) |