| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sge0sup.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
| 2 |
|
sge0sup.f |
⊢ ( 𝜑 → 𝐹 : 𝑋 ⟶ ( 0 [,] +∞ ) ) |
| 3 |
|
eqidd |
⊢ ( ( 𝜑 ∧ +∞ ∈ ran 𝐹 ) → +∞ = +∞ ) |
| 4 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ +∞ ∈ ran 𝐹 ) → 𝑋 ∈ 𝑉 ) |
| 5 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ +∞ ∈ ran 𝐹 ) → 𝐹 : 𝑋 ⟶ ( 0 [,] +∞ ) ) |
| 6 |
|
simpr |
⊢ ( ( 𝜑 ∧ +∞ ∈ ran 𝐹 ) → +∞ ∈ ran 𝐹 ) |
| 7 |
4 5 6
|
sge0pnfval |
⊢ ( ( 𝜑 ∧ +∞ ∈ ran 𝐹 ) → ( Σ^ ‘ 𝐹 ) = +∞ ) |
| 8 |
|
vex |
⊢ 𝑥 ∈ V |
| 9 |
8
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) → 𝑥 ∈ V ) |
| 10 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) → 𝐹 : 𝑋 ⟶ ( 0 [,] +∞ ) ) |
| 11 |
|
elinel1 |
⊢ ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) → 𝑥 ∈ 𝒫 𝑋 ) |
| 12 |
|
elpwi |
⊢ ( 𝑥 ∈ 𝒫 𝑋 → 𝑥 ⊆ 𝑋 ) |
| 13 |
11 12
|
syl |
⊢ ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) → 𝑥 ⊆ 𝑋 ) |
| 14 |
13
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) → 𝑥 ⊆ 𝑋 ) |
| 15 |
10 14
|
fssresd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) → ( 𝐹 ↾ 𝑥 ) : 𝑥 ⟶ ( 0 [,] +∞ ) ) |
| 16 |
9 15
|
sge0xrcl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) → ( Σ^ ‘ ( 𝐹 ↾ 𝑥 ) ) ∈ ℝ* ) |
| 17 |
16
|
adantlr |
⊢ ( ( ( 𝜑 ∧ +∞ ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) → ( Σ^ ‘ ( 𝐹 ↾ 𝑥 ) ) ∈ ℝ* ) |
| 18 |
17
|
ralrimiva |
⊢ ( ( 𝜑 ∧ +∞ ∈ ran 𝐹 ) → ∀ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ( Σ^ ‘ ( 𝐹 ↾ 𝑥 ) ) ∈ ℝ* ) |
| 19 |
|
eqid |
⊢ ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( Σ^ ‘ ( 𝐹 ↾ 𝑥 ) ) ) = ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( Σ^ ‘ ( 𝐹 ↾ 𝑥 ) ) ) |
| 20 |
19
|
rnmptss |
⊢ ( ∀ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ( Σ^ ‘ ( 𝐹 ↾ 𝑥 ) ) ∈ ℝ* → ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( Σ^ ‘ ( 𝐹 ↾ 𝑥 ) ) ) ⊆ ℝ* ) |
| 21 |
18 20
|
syl |
⊢ ( ( 𝜑 ∧ +∞ ∈ ran 𝐹 ) → ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( Σ^ ‘ ( 𝐹 ↾ 𝑥 ) ) ) ⊆ ℝ* ) |
| 22 |
2
|
ffnd |
⊢ ( 𝜑 → 𝐹 Fn 𝑋 ) |
| 23 |
|
fvelrnb |
⊢ ( 𝐹 Fn 𝑋 → ( +∞ ∈ ran 𝐹 ↔ ∃ 𝑦 ∈ 𝑋 ( 𝐹 ‘ 𝑦 ) = +∞ ) ) |
| 24 |
22 23
|
syl |
⊢ ( 𝜑 → ( +∞ ∈ ran 𝐹 ↔ ∃ 𝑦 ∈ 𝑋 ( 𝐹 ‘ 𝑦 ) = +∞ ) ) |
| 25 |
24
|
adantr |
⊢ ( ( 𝜑 ∧ +∞ ∈ ran 𝐹 ) → ( +∞ ∈ ran 𝐹 ↔ ∃ 𝑦 ∈ 𝑋 ( 𝐹 ‘ 𝑦 ) = +∞ ) ) |
| 26 |
6 25
|
mpbid |
⊢ ( ( 𝜑 ∧ +∞ ∈ ran 𝐹 ) → ∃ 𝑦 ∈ 𝑋 ( 𝐹 ‘ 𝑦 ) = +∞ ) |
| 27 |
|
snelpwi |
⊢ ( 𝑦 ∈ 𝑋 → { 𝑦 } ∈ 𝒫 𝑋 ) |
| 28 |
|
snfi |
⊢ { 𝑦 } ∈ Fin |
| 29 |
28
|
a1i |
⊢ ( 𝑦 ∈ 𝑋 → { 𝑦 } ∈ Fin ) |
| 30 |
27 29
|
elind |
⊢ ( 𝑦 ∈ 𝑋 → { 𝑦 } ∈ ( 𝒫 𝑋 ∩ Fin ) ) |
| 31 |
30
|
3ad2ant2 |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑦 ) = +∞ ) → { 𝑦 } ∈ ( 𝒫 𝑋 ∩ Fin ) ) |
| 32 |
|
simp2 |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑦 ) = +∞ ) → 𝑦 ∈ 𝑋 ) |
| 33 |
2
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑦 ) = +∞ ) → 𝐹 : 𝑋 ⟶ ( 0 [,] +∞ ) ) |
| 34 |
32
|
snssd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑦 ) = +∞ ) → { 𝑦 } ⊆ 𝑋 ) |
| 35 |
33 34
|
fssresd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑦 ) = +∞ ) → ( 𝐹 ↾ { 𝑦 } ) : { 𝑦 } ⟶ ( 0 [,] +∞ ) ) |
| 36 |
32 35
|
sge0sn |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑦 ) = +∞ ) → ( Σ^ ‘ ( 𝐹 ↾ { 𝑦 } ) ) = ( ( 𝐹 ↾ { 𝑦 } ) ‘ 𝑦 ) ) |
| 37 |
|
vsnid |
⊢ 𝑦 ∈ { 𝑦 } |
| 38 |
|
fvres |
⊢ ( 𝑦 ∈ { 𝑦 } → ( ( 𝐹 ↾ { 𝑦 } ) ‘ 𝑦 ) = ( 𝐹 ‘ 𝑦 ) ) |
| 39 |
37 38
|
ax-mp |
⊢ ( ( 𝐹 ↾ { 𝑦 } ) ‘ 𝑦 ) = ( 𝐹 ‘ 𝑦 ) |
| 40 |
39
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑦 ) = +∞ ) → ( ( 𝐹 ↾ { 𝑦 } ) ‘ 𝑦 ) = ( 𝐹 ‘ 𝑦 ) ) |
| 41 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑦 ) = +∞ ) → ( 𝐹 ‘ 𝑦 ) = +∞ ) |
| 42 |
36 40 41
|
3eqtrrd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑦 ) = +∞ ) → +∞ = ( Σ^ ‘ ( 𝐹 ↾ { 𝑦 } ) ) ) |
| 43 |
|
reseq2 |
⊢ ( 𝑥 = { 𝑦 } → ( 𝐹 ↾ 𝑥 ) = ( 𝐹 ↾ { 𝑦 } ) ) |
| 44 |
43
|
fveq2d |
⊢ ( 𝑥 = { 𝑦 } → ( Σ^ ‘ ( 𝐹 ↾ 𝑥 ) ) = ( Σ^ ‘ ( 𝐹 ↾ { 𝑦 } ) ) ) |
| 45 |
44
|
rspceeqv |
⊢ ( ( { 𝑦 } ∈ ( 𝒫 𝑋 ∩ Fin ) ∧ +∞ = ( Σ^ ‘ ( 𝐹 ↾ { 𝑦 } ) ) ) → ∃ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) +∞ = ( Σ^ ‘ ( 𝐹 ↾ 𝑥 ) ) ) |
| 46 |
31 42 45
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑦 ) = +∞ ) → ∃ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) +∞ = ( Σ^ ‘ ( 𝐹 ↾ 𝑥 ) ) ) |
| 47 |
|
pnfex |
⊢ +∞ ∈ V |
| 48 |
47
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑦 ) = +∞ ) → +∞ ∈ V ) |
| 49 |
19 46 48
|
elrnmptd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑦 ) = +∞ ) → +∞ ∈ ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( Σ^ ‘ ( 𝐹 ↾ 𝑥 ) ) ) ) |
| 50 |
49
|
3exp |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝑋 → ( ( 𝐹 ‘ 𝑦 ) = +∞ → +∞ ∈ ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( Σ^ ‘ ( 𝐹 ↾ 𝑥 ) ) ) ) ) ) |
| 51 |
50
|
rexlimdv |
⊢ ( 𝜑 → ( ∃ 𝑦 ∈ 𝑋 ( 𝐹 ‘ 𝑦 ) = +∞ → +∞ ∈ ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( Σ^ ‘ ( 𝐹 ↾ 𝑥 ) ) ) ) ) |
| 52 |
51
|
adantr |
⊢ ( ( 𝜑 ∧ +∞ ∈ ran 𝐹 ) → ( ∃ 𝑦 ∈ 𝑋 ( 𝐹 ‘ 𝑦 ) = +∞ → +∞ ∈ ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( Σ^ ‘ ( 𝐹 ↾ 𝑥 ) ) ) ) ) |
| 53 |
26 52
|
mpd |
⊢ ( ( 𝜑 ∧ +∞ ∈ ran 𝐹 ) → +∞ ∈ ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( Σ^ ‘ ( 𝐹 ↾ 𝑥 ) ) ) ) |
| 54 |
|
supxrpnf |
⊢ ( ( ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( Σ^ ‘ ( 𝐹 ↾ 𝑥 ) ) ) ⊆ ℝ* ∧ +∞ ∈ ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( Σ^ ‘ ( 𝐹 ↾ 𝑥 ) ) ) ) → sup ( ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( Σ^ ‘ ( 𝐹 ↾ 𝑥 ) ) ) , ℝ* , < ) = +∞ ) |
| 55 |
21 53 54
|
syl2anc |
⊢ ( ( 𝜑 ∧ +∞ ∈ ran 𝐹 ) → sup ( ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( Σ^ ‘ ( 𝐹 ↾ 𝑥 ) ) ) , ℝ* , < ) = +∞ ) |
| 56 |
3 7 55
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ +∞ ∈ ran 𝐹 ) → ( Σ^ ‘ 𝐹 ) = sup ( ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( Σ^ ‘ ( 𝐹 ↾ 𝑥 ) ) ) , ℝ* , < ) ) |
| 57 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) → 𝑋 ∈ 𝑉 ) |
| 58 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) → 𝐹 : 𝑋 ⟶ ( 0 [,] +∞ ) ) |
| 59 |
|
simpr |
⊢ ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) → ¬ +∞ ∈ ran 𝐹 ) |
| 60 |
58 59
|
fge0iccico |
⊢ ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) → 𝐹 : 𝑋 ⟶ ( 0 [,) +∞ ) ) |
| 61 |
57 60
|
sge0reval |
⊢ ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) → ( Σ^ ‘ 𝐹 ) = sup ( ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ) , ℝ* , < ) ) |
| 62 |
|
elinel2 |
⊢ ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) → 𝑥 ∈ Fin ) |
| 63 |
62
|
adantl |
⊢ ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) → 𝑥 ∈ Fin ) |
| 64 |
15
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) → ( 𝐹 ↾ 𝑥 ) : 𝑥 ⟶ ( 0 [,] +∞ ) ) |
| 65 |
|
nelrnres |
⊢ ( ¬ +∞ ∈ ran 𝐹 → ¬ +∞ ∈ ran ( 𝐹 ↾ 𝑥 ) ) |
| 66 |
65
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) → ¬ +∞ ∈ ran ( 𝐹 ↾ 𝑥 ) ) |
| 67 |
64 66
|
fge0iccico |
⊢ ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) → ( 𝐹 ↾ 𝑥 ) : 𝑥 ⟶ ( 0 [,) +∞ ) ) |
| 68 |
63 67
|
sge0fsum |
⊢ ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) → ( Σ^ ‘ ( 𝐹 ↾ 𝑥 ) ) = Σ 𝑦 ∈ 𝑥 ( ( 𝐹 ↾ 𝑥 ) ‘ 𝑦 ) ) |
| 69 |
|
simpr |
⊢ ( ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ∧ 𝑦 ∈ 𝑥 ) → 𝑦 ∈ 𝑥 ) |
| 70 |
|
fvres |
⊢ ( 𝑦 ∈ 𝑥 → ( ( 𝐹 ↾ 𝑥 ) ‘ 𝑦 ) = ( 𝐹 ‘ 𝑦 ) ) |
| 71 |
69 70
|
syl |
⊢ ( ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ∧ 𝑦 ∈ 𝑥 ) → ( ( 𝐹 ↾ 𝑥 ) ‘ 𝑦 ) = ( 𝐹 ‘ 𝑦 ) ) |
| 72 |
71
|
sumeq2dv |
⊢ ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) → Σ 𝑦 ∈ 𝑥 ( ( 𝐹 ↾ 𝑥 ) ‘ 𝑦 ) = Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ) |
| 73 |
72
|
adantl |
⊢ ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) → Σ 𝑦 ∈ 𝑥 ( ( 𝐹 ↾ 𝑥 ) ‘ 𝑦 ) = Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ) |
| 74 |
68 73
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) → ( Σ^ ‘ ( 𝐹 ↾ 𝑥 ) ) = Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ) |
| 75 |
74
|
mpteq2dva |
⊢ ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) → ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( Σ^ ‘ ( 𝐹 ↾ 𝑥 ) ) ) = ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ) ) |
| 76 |
75
|
rneqd |
⊢ ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) → ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( Σ^ ‘ ( 𝐹 ↾ 𝑥 ) ) ) = ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ) ) |
| 77 |
76
|
supeq1d |
⊢ ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) → sup ( ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( Σ^ ‘ ( 𝐹 ↾ 𝑥 ) ) ) , ℝ* , < ) = sup ( ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ) , ℝ* , < ) ) |
| 78 |
61 77
|
eqtr4d |
⊢ ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) → ( Σ^ ‘ 𝐹 ) = sup ( ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( Σ^ ‘ ( 𝐹 ↾ 𝑥 ) ) ) , ℝ* , < ) ) |
| 79 |
56 78
|
pm2.61dan |
⊢ ( 𝜑 → ( Σ^ ‘ 𝐹 ) = sup ( ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( Σ^ ‘ ( 𝐹 ↾ 𝑥 ) ) ) , ℝ* , < ) ) |