Metamath Proof Explorer


Theorem sge0sup

Description: The arbitrary sum of nonnegative extended reals is the supremum of finite subsums. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses sge0sup.x ( 𝜑𝑋𝑉 )
sge0sup.f ( 𝜑𝐹 : 𝑋 ⟶ ( 0 [,] +∞ ) )
Assertion sge0sup ( 𝜑 → ( Σ^𝐹 ) = sup ( ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( Σ^ ‘ ( 𝐹𝑥 ) ) ) , ℝ* , < ) )

Proof

Step Hyp Ref Expression
1 sge0sup.x ( 𝜑𝑋𝑉 )
2 sge0sup.f ( 𝜑𝐹 : 𝑋 ⟶ ( 0 [,] +∞ ) )
3 eqidd ( ( 𝜑 ∧ +∞ ∈ ran 𝐹 ) → +∞ = +∞ )
4 1 adantr ( ( 𝜑 ∧ +∞ ∈ ran 𝐹 ) → 𝑋𝑉 )
5 2 adantr ( ( 𝜑 ∧ +∞ ∈ ran 𝐹 ) → 𝐹 : 𝑋 ⟶ ( 0 [,] +∞ ) )
6 simpr ( ( 𝜑 ∧ +∞ ∈ ran 𝐹 ) → +∞ ∈ ran 𝐹 )
7 4 5 6 sge0pnfval ( ( 𝜑 ∧ +∞ ∈ ran 𝐹 ) → ( Σ^𝐹 ) = +∞ )
8 vex 𝑥 ∈ V
9 8 a1i ( ( 𝜑𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) → 𝑥 ∈ V )
10 2 adantr ( ( 𝜑𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) → 𝐹 : 𝑋 ⟶ ( 0 [,] +∞ ) )
11 elinel1 ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) → 𝑥 ∈ 𝒫 𝑋 )
12 elpwi ( 𝑥 ∈ 𝒫 𝑋𝑥𝑋 )
13 11 12 syl ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) → 𝑥𝑋 )
14 13 adantl ( ( 𝜑𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) → 𝑥𝑋 )
15 10 14 fssresd ( ( 𝜑𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) → ( 𝐹𝑥 ) : 𝑥 ⟶ ( 0 [,] +∞ ) )
16 9 15 sge0xrcl ( ( 𝜑𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) → ( Σ^ ‘ ( 𝐹𝑥 ) ) ∈ ℝ* )
17 16 adantlr ( ( ( 𝜑 ∧ +∞ ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) → ( Σ^ ‘ ( 𝐹𝑥 ) ) ∈ ℝ* )
18 17 ralrimiva ( ( 𝜑 ∧ +∞ ∈ ran 𝐹 ) → ∀ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ( Σ^ ‘ ( 𝐹𝑥 ) ) ∈ ℝ* )
19 eqid ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( Σ^ ‘ ( 𝐹𝑥 ) ) ) = ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( Σ^ ‘ ( 𝐹𝑥 ) ) )
20 19 rnmptss ( ∀ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ( Σ^ ‘ ( 𝐹𝑥 ) ) ∈ ℝ* → ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( Σ^ ‘ ( 𝐹𝑥 ) ) ) ⊆ ℝ* )
21 18 20 syl ( ( 𝜑 ∧ +∞ ∈ ran 𝐹 ) → ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( Σ^ ‘ ( 𝐹𝑥 ) ) ) ⊆ ℝ* )
22 2 ffnd ( 𝜑𝐹 Fn 𝑋 )
23 fvelrnb ( 𝐹 Fn 𝑋 → ( +∞ ∈ ran 𝐹 ↔ ∃ 𝑦𝑋 ( 𝐹𝑦 ) = +∞ ) )
24 22 23 syl ( 𝜑 → ( +∞ ∈ ran 𝐹 ↔ ∃ 𝑦𝑋 ( 𝐹𝑦 ) = +∞ ) )
25 24 adantr ( ( 𝜑 ∧ +∞ ∈ ran 𝐹 ) → ( +∞ ∈ ran 𝐹 ↔ ∃ 𝑦𝑋 ( 𝐹𝑦 ) = +∞ ) )
26 6 25 mpbid ( ( 𝜑 ∧ +∞ ∈ ran 𝐹 ) → ∃ 𝑦𝑋 ( 𝐹𝑦 ) = +∞ )
27 snelpwi ( 𝑦𝑋 → { 𝑦 } ∈ 𝒫 𝑋 )
28 snfi { 𝑦 } ∈ Fin
29 28 a1i ( 𝑦𝑋 → { 𝑦 } ∈ Fin )
30 27 29 elind ( 𝑦𝑋 → { 𝑦 } ∈ ( 𝒫 𝑋 ∩ Fin ) )
31 30 3ad2ant2 ( ( 𝜑𝑦𝑋 ∧ ( 𝐹𝑦 ) = +∞ ) → { 𝑦 } ∈ ( 𝒫 𝑋 ∩ Fin ) )
32 simp2 ( ( 𝜑𝑦𝑋 ∧ ( 𝐹𝑦 ) = +∞ ) → 𝑦𝑋 )
33 2 3ad2ant1 ( ( 𝜑𝑦𝑋 ∧ ( 𝐹𝑦 ) = +∞ ) → 𝐹 : 𝑋 ⟶ ( 0 [,] +∞ ) )
34 32 snssd ( ( 𝜑𝑦𝑋 ∧ ( 𝐹𝑦 ) = +∞ ) → { 𝑦 } ⊆ 𝑋 )
35 33 34 fssresd ( ( 𝜑𝑦𝑋 ∧ ( 𝐹𝑦 ) = +∞ ) → ( 𝐹 ↾ { 𝑦 } ) : { 𝑦 } ⟶ ( 0 [,] +∞ ) )
36 32 35 sge0sn ( ( 𝜑𝑦𝑋 ∧ ( 𝐹𝑦 ) = +∞ ) → ( Σ^ ‘ ( 𝐹 ↾ { 𝑦 } ) ) = ( ( 𝐹 ↾ { 𝑦 } ) ‘ 𝑦 ) )
37 vsnid 𝑦 ∈ { 𝑦 }
38 fvres ( 𝑦 ∈ { 𝑦 } → ( ( 𝐹 ↾ { 𝑦 } ) ‘ 𝑦 ) = ( 𝐹𝑦 ) )
39 37 38 ax-mp ( ( 𝐹 ↾ { 𝑦 } ) ‘ 𝑦 ) = ( 𝐹𝑦 )
40 39 a1i ( ( 𝜑𝑦𝑋 ∧ ( 𝐹𝑦 ) = +∞ ) → ( ( 𝐹 ↾ { 𝑦 } ) ‘ 𝑦 ) = ( 𝐹𝑦 ) )
41 simp3 ( ( 𝜑𝑦𝑋 ∧ ( 𝐹𝑦 ) = +∞ ) → ( 𝐹𝑦 ) = +∞ )
42 36 40 41 3eqtrrd ( ( 𝜑𝑦𝑋 ∧ ( 𝐹𝑦 ) = +∞ ) → +∞ = ( Σ^ ‘ ( 𝐹 ↾ { 𝑦 } ) ) )
43 reseq2 ( 𝑥 = { 𝑦 } → ( 𝐹𝑥 ) = ( 𝐹 ↾ { 𝑦 } ) )
44 43 fveq2d ( 𝑥 = { 𝑦 } → ( Σ^ ‘ ( 𝐹𝑥 ) ) = ( Σ^ ‘ ( 𝐹 ↾ { 𝑦 } ) ) )
45 44 rspceeqv ( ( { 𝑦 } ∈ ( 𝒫 𝑋 ∩ Fin ) ∧ +∞ = ( Σ^ ‘ ( 𝐹 ↾ { 𝑦 } ) ) ) → ∃ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) +∞ = ( Σ^ ‘ ( 𝐹𝑥 ) ) )
46 31 42 45 syl2anc ( ( 𝜑𝑦𝑋 ∧ ( 𝐹𝑦 ) = +∞ ) → ∃ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) +∞ = ( Σ^ ‘ ( 𝐹𝑥 ) ) )
47 pnfex +∞ ∈ V
48 47 a1i ( ( 𝜑𝑦𝑋 ∧ ( 𝐹𝑦 ) = +∞ ) → +∞ ∈ V )
49 19 46 48 elrnmptd ( ( 𝜑𝑦𝑋 ∧ ( 𝐹𝑦 ) = +∞ ) → +∞ ∈ ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( Σ^ ‘ ( 𝐹𝑥 ) ) ) )
50 49 3exp ( 𝜑 → ( 𝑦𝑋 → ( ( 𝐹𝑦 ) = +∞ → +∞ ∈ ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( Σ^ ‘ ( 𝐹𝑥 ) ) ) ) ) )
51 50 rexlimdv ( 𝜑 → ( ∃ 𝑦𝑋 ( 𝐹𝑦 ) = +∞ → +∞ ∈ ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( Σ^ ‘ ( 𝐹𝑥 ) ) ) ) )
52 51 adantr ( ( 𝜑 ∧ +∞ ∈ ran 𝐹 ) → ( ∃ 𝑦𝑋 ( 𝐹𝑦 ) = +∞ → +∞ ∈ ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( Σ^ ‘ ( 𝐹𝑥 ) ) ) ) )
53 26 52 mpd ( ( 𝜑 ∧ +∞ ∈ ran 𝐹 ) → +∞ ∈ ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( Σ^ ‘ ( 𝐹𝑥 ) ) ) )
54 supxrpnf ( ( ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( Σ^ ‘ ( 𝐹𝑥 ) ) ) ⊆ ℝ* ∧ +∞ ∈ ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( Σ^ ‘ ( 𝐹𝑥 ) ) ) ) → sup ( ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( Σ^ ‘ ( 𝐹𝑥 ) ) ) , ℝ* , < ) = +∞ )
55 21 53 54 syl2anc ( ( 𝜑 ∧ +∞ ∈ ran 𝐹 ) → sup ( ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( Σ^ ‘ ( 𝐹𝑥 ) ) ) , ℝ* , < ) = +∞ )
56 3 7 55 3eqtr4d ( ( 𝜑 ∧ +∞ ∈ ran 𝐹 ) → ( Σ^𝐹 ) = sup ( ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( Σ^ ‘ ( 𝐹𝑥 ) ) ) , ℝ* , < ) )
57 1 adantr ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) → 𝑋𝑉 )
58 2 adantr ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) → 𝐹 : 𝑋 ⟶ ( 0 [,] +∞ ) )
59 simpr ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) → ¬ +∞ ∈ ran 𝐹 )
60 58 59 fge0iccico ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) → 𝐹 : 𝑋 ⟶ ( 0 [,) +∞ ) )
61 57 60 sge0reval ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) → ( Σ^𝐹 ) = sup ( ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ Σ 𝑦𝑥 ( 𝐹𝑦 ) ) , ℝ* , < ) )
62 elinel2 ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) → 𝑥 ∈ Fin )
63 62 adantl ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) → 𝑥 ∈ Fin )
64 15 adantlr ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) → ( 𝐹𝑥 ) : 𝑥 ⟶ ( 0 [,] +∞ ) )
65 nelrnres ( ¬ +∞ ∈ ran 𝐹 → ¬ +∞ ∈ ran ( 𝐹𝑥 ) )
66 65 ad2antlr ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) → ¬ +∞ ∈ ran ( 𝐹𝑥 ) )
67 64 66 fge0iccico ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) → ( 𝐹𝑥 ) : 𝑥 ⟶ ( 0 [,) +∞ ) )
68 63 67 sge0fsum ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) → ( Σ^ ‘ ( 𝐹𝑥 ) ) = Σ 𝑦𝑥 ( ( 𝐹𝑥 ) ‘ 𝑦 ) )
69 simpr ( ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ∧ 𝑦𝑥 ) → 𝑦𝑥 )
70 fvres ( 𝑦𝑥 → ( ( 𝐹𝑥 ) ‘ 𝑦 ) = ( 𝐹𝑦 ) )
71 69 70 syl ( ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ∧ 𝑦𝑥 ) → ( ( 𝐹𝑥 ) ‘ 𝑦 ) = ( 𝐹𝑦 ) )
72 71 sumeq2dv ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) → Σ 𝑦𝑥 ( ( 𝐹𝑥 ) ‘ 𝑦 ) = Σ 𝑦𝑥 ( 𝐹𝑦 ) )
73 72 adantl ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) → Σ 𝑦𝑥 ( ( 𝐹𝑥 ) ‘ 𝑦 ) = Σ 𝑦𝑥 ( 𝐹𝑦 ) )
74 68 73 eqtrd ( ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) → ( Σ^ ‘ ( 𝐹𝑥 ) ) = Σ 𝑦𝑥 ( 𝐹𝑦 ) )
75 74 mpteq2dva ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) → ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( Σ^ ‘ ( 𝐹𝑥 ) ) ) = ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ Σ 𝑦𝑥 ( 𝐹𝑦 ) ) )
76 75 rneqd ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) → ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( Σ^ ‘ ( 𝐹𝑥 ) ) ) = ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ Σ 𝑦𝑥 ( 𝐹𝑦 ) ) )
77 76 supeq1d ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) → sup ( ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( Σ^ ‘ ( 𝐹𝑥 ) ) ) , ℝ* , < ) = sup ( ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ Σ 𝑦𝑥 ( 𝐹𝑦 ) ) , ℝ* , < ) )
78 61 77 eqtr4d ( ( 𝜑 ∧ ¬ +∞ ∈ ran 𝐹 ) → ( Σ^𝐹 ) = sup ( ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( Σ^ ‘ ( 𝐹𝑥 ) ) ) , ℝ* , < ) )
79 56 78 pm2.61dan ( 𝜑 → ( Σ^𝐹 ) = sup ( ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ ( Σ^ ‘ ( 𝐹𝑥 ) ) ) , ℝ* , < ) )