| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sge0sup.x | ⊢ ( 𝜑  →  𝑋  ∈  𝑉 ) | 
						
							| 2 |  | sge0sup.f | ⊢ ( 𝜑  →  𝐹 : 𝑋 ⟶ ( 0 [,] +∞ ) ) | 
						
							| 3 |  | eqidd | ⊢ ( ( 𝜑  ∧  +∞  ∈  ran  𝐹 )  →  +∞  =  +∞ ) | 
						
							| 4 | 1 | adantr | ⊢ ( ( 𝜑  ∧  +∞  ∈  ran  𝐹 )  →  𝑋  ∈  𝑉 ) | 
						
							| 5 | 2 | adantr | ⊢ ( ( 𝜑  ∧  +∞  ∈  ran  𝐹 )  →  𝐹 : 𝑋 ⟶ ( 0 [,] +∞ ) ) | 
						
							| 6 |  | simpr | ⊢ ( ( 𝜑  ∧  +∞  ∈  ran  𝐹 )  →  +∞  ∈  ran  𝐹 ) | 
						
							| 7 | 4 5 6 | sge0pnfval | ⊢ ( ( 𝜑  ∧  +∞  ∈  ran  𝐹 )  →  ( Σ^ ‘ 𝐹 )  =  +∞ ) | 
						
							| 8 |  | vex | ⊢ 𝑥  ∈  V | 
						
							| 9 | 8 | a1i | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝒫  𝑋  ∩  Fin ) )  →  𝑥  ∈  V ) | 
						
							| 10 | 2 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝒫  𝑋  ∩  Fin ) )  →  𝐹 : 𝑋 ⟶ ( 0 [,] +∞ ) ) | 
						
							| 11 |  | elinel1 | ⊢ ( 𝑥  ∈  ( 𝒫  𝑋  ∩  Fin )  →  𝑥  ∈  𝒫  𝑋 ) | 
						
							| 12 |  | elpwi | ⊢ ( 𝑥  ∈  𝒫  𝑋  →  𝑥  ⊆  𝑋 ) | 
						
							| 13 | 11 12 | syl | ⊢ ( 𝑥  ∈  ( 𝒫  𝑋  ∩  Fin )  →  𝑥  ⊆  𝑋 ) | 
						
							| 14 | 13 | adantl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝒫  𝑋  ∩  Fin ) )  →  𝑥  ⊆  𝑋 ) | 
						
							| 15 | 10 14 | fssresd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝒫  𝑋  ∩  Fin ) )  →  ( 𝐹  ↾  𝑥 ) : 𝑥 ⟶ ( 0 [,] +∞ ) ) | 
						
							| 16 | 9 15 | sge0xrcl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝒫  𝑋  ∩  Fin ) )  →  ( Σ^ ‘ ( 𝐹  ↾  𝑥 ) )  ∈  ℝ* ) | 
						
							| 17 | 16 | adantlr | ⊢ ( ( ( 𝜑  ∧  +∞  ∈  ran  𝐹 )  ∧  𝑥  ∈  ( 𝒫  𝑋  ∩  Fin ) )  →  ( Σ^ ‘ ( 𝐹  ↾  𝑥 ) )  ∈  ℝ* ) | 
						
							| 18 | 17 | ralrimiva | ⊢ ( ( 𝜑  ∧  +∞  ∈  ran  𝐹 )  →  ∀ 𝑥  ∈  ( 𝒫  𝑋  ∩  Fin ) ( Σ^ ‘ ( 𝐹  ↾  𝑥 ) )  ∈  ℝ* ) | 
						
							| 19 |  | eqid | ⊢ ( 𝑥  ∈  ( 𝒫  𝑋  ∩  Fin )  ↦  ( Σ^ ‘ ( 𝐹  ↾  𝑥 ) ) )  =  ( 𝑥  ∈  ( 𝒫  𝑋  ∩  Fin )  ↦  ( Σ^ ‘ ( 𝐹  ↾  𝑥 ) ) ) | 
						
							| 20 | 19 | rnmptss | ⊢ ( ∀ 𝑥  ∈  ( 𝒫  𝑋  ∩  Fin ) ( Σ^ ‘ ( 𝐹  ↾  𝑥 ) )  ∈  ℝ*  →  ran  ( 𝑥  ∈  ( 𝒫  𝑋  ∩  Fin )  ↦  ( Σ^ ‘ ( 𝐹  ↾  𝑥 ) ) )  ⊆  ℝ* ) | 
						
							| 21 | 18 20 | syl | ⊢ ( ( 𝜑  ∧  +∞  ∈  ran  𝐹 )  →  ran  ( 𝑥  ∈  ( 𝒫  𝑋  ∩  Fin )  ↦  ( Σ^ ‘ ( 𝐹  ↾  𝑥 ) ) )  ⊆  ℝ* ) | 
						
							| 22 | 2 | ffnd | ⊢ ( 𝜑  →  𝐹  Fn  𝑋 ) | 
						
							| 23 |  | fvelrnb | ⊢ ( 𝐹  Fn  𝑋  →  ( +∞  ∈  ran  𝐹  ↔  ∃ 𝑦  ∈  𝑋 ( 𝐹 ‘ 𝑦 )  =  +∞ ) ) | 
						
							| 24 | 22 23 | syl | ⊢ ( 𝜑  →  ( +∞  ∈  ran  𝐹  ↔  ∃ 𝑦  ∈  𝑋 ( 𝐹 ‘ 𝑦 )  =  +∞ ) ) | 
						
							| 25 | 24 | adantr | ⊢ ( ( 𝜑  ∧  +∞  ∈  ran  𝐹 )  →  ( +∞  ∈  ran  𝐹  ↔  ∃ 𝑦  ∈  𝑋 ( 𝐹 ‘ 𝑦 )  =  +∞ ) ) | 
						
							| 26 | 6 25 | mpbid | ⊢ ( ( 𝜑  ∧  +∞  ∈  ran  𝐹 )  →  ∃ 𝑦  ∈  𝑋 ( 𝐹 ‘ 𝑦 )  =  +∞ ) | 
						
							| 27 |  | snelpwi | ⊢ ( 𝑦  ∈  𝑋  →  { 𝑦 }  ∈  𝒫  𝑋 ) | 
						
							| 28 |  | snfi | ⊢ { 𝑦 }  ∈  Fin | 
						
							| 29 | 28 | a1i | ⊢ ( 𝑦  ∈  𝑋  →  { 𝑦 }  ∈  Fin ) | 
						
							| 30 | 27 29 | elind | ⊢ ( 𝑦  ∈  𝑋  →  { 𝑦 }  ∈  ( 𝒫  𝑋  ∩  Fin ) ) | 
						
							| 31 | 30 | 3ad2ant2 | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑋  ∧  ( 𝐹 ‘ 𝑦 )  =  +∞ )  →  { 𝑦 }  ∈  ( 𝒫  𝑋  ∩  Fin ) ) | 
						
							| 32 |  | simp2 | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑋  ∧  ( 𝐹 ‘ 𝑦 )  =  +∞ )  →  𝑦  ∈  𝑋 ) | 
						
							| 33 | 2 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑋  ∧  ( 𝐹 ‘ 𝑦 )  =  +∞ )  →  𝐹 : 𝑋 ⟶ ( 0 [,] +∞ ) ) | 
						
							| 34 | 32 | snssd | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑋  ∧  ( 𝐹 ‘ 𝑦 )  =  +∞ )  →  { 𝑦 }  ⊆  𝑋 ) | 
						
							| 35 | 33 34 | fssresd | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑋  ∧  ( 𝐹 ‘ 𝑦 )  =  +∞ )  →  ( 𝐹  ↾  { 𝑦 } ) : { 𝑦 } ⟶ ( 0 [,] +∞ ) ) | 
						
							| 36 | 32 35 | sge0sn | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑋  ∧  ( 𝐹 ‘ 𝑦 )  =  +∞ )  →  ( Σ^ ‘ ( 𝐹  ↾  { 𝑦 } ) )  =  ( ( 𝐹  ↾  { 𝑦 } ) ‘ 𝑦 ) ) | 
						
							| 37 |  | vsnid | ⊢ 𝑦  ∈  { 𝑦 } | 
						
							| 38 |  | fvres | ⊢ ( 𝑦  ∈  { 𝑦 }  →  ( ( 𝐹  ↾  { 𝑦 } ) ‘ 𝑦 )  =  ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 39 | 37 38 | ax-mp | ⊢ ( ( 𝐹  ↾  { 𝑦 } ) ‘ 𝑦 )  =  ( 𝐹 ‘ 𝑦 ) | 
						
							| 40 | 39 | a1i | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑋  ∧  ( 𝐹 ‘ 𝑦 )  =  +∞ )  →  ( ( 𝐹  ↾  { 𝑦 } ) ‘ 𝑦 )  =  ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 41 |  | simp3 | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑋  ∧  ( 𝐹 ‘ 𝑦 )  =  +∞ )  →  ( 𝐹 ‘ 𝑦 )  =  +∞ ) | 
						
							| 42 | 36 40 41 | 3eqtrrd | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑋  ∧  ( 𝐹 ‘ 𝑦 )  =  +∞ )  →  +∞  =  ( Σ^ ‘ ( 𝐹  ↾  { 𝑦 } ) ) ) | 
						
							| 43 |  | reseq2 | ⊢ ( 𝑥  =  { 𝑦 }  →  ( 𝐹  ↾  𝑥 )  =  ( 𝐹  ↾  { 𝑦 } ) ) | 
						
							| 44 | 43 | fveq2d | ⊢ ( 𝑥  =  { 𝑦 }  →  ( Σ^ ‘ ( 𝐹  ↾  𝑥 ) )  =  ( Σ^ ‘ ( 𝐹  ↾  { 𝑦 } ) ) ) | 
						
							| 45 | 44 | rspceeqv | ⊢ ( ( { 𝑦 }  ∈  ( 𝒫  𝑋  ∩  Fin )  ∧  +∞  =  ( Σ^ ‘ ( 𝐹  ↾  { 𝑦 } ) ) )  →  ∃ 𝑥  ∈  ( 𝒫  𝑋  ∩  Fin ) +∞  =  ( Σ^ ‘ ( 𝐹  ↾  𝑥 ) ) ) | 
						
							| 46 | 31 42 45 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑋  ∧  ( 𝐹 ‘ 𝑦 )  =  +∞ )  →  ∃ 𝑥  ∈  ( 𝒫  𝑋  ∩  Fin ) +∞  =  ( Σ^ ‘ ( 𝐹  ↾  𝑥 ) ) ) | 
						
							| 47 |  | pnfex | ⊢ +∞  ∈  V | 
						
							| 48 | 47 | a1i | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑋  ∧  ( 𝐹 ‘ 𝑦 )  =  +∞ )  →  +∞  ∈  V ) | 
						
							| 49 | 19 46 48 | elrnmptd | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑋  ∧  ( 𝐹 ‘ 𝑦 )  =  +∞ )  →  +∞  ∈  ran  ( 𝑥  ∈  ( 𝒫  𝑋  ∩  Fin )  ↦  ( Σ^ ‘ ( 𝐹  ↾  𝑥 ) ) ) ) | 
						
							| 50 | 49 | 3exp | ⊢ ( 𝜑  →  ( 𝑦  ∈  𝑋  →  ( ( 𝐹 ‘ 𝑦 )  =  +∞  →  +∞  ∈  ran  ( 𝑥  ∈  ( 𝒫  𝑋  ∩  Fin )  ↦  ( Σ^ ‘ ( 𝐹  ↾  𝑥 ) ) ) ) ) ) | 
						
							| 51 | 50 | rexlimdv | ⊢ ( 𝜑  →  ( ∃ 𝑦  ∈  𝑋 ( 𝐹 ‘ 𝑦 )  =  +∞  →  +∞  ∈  ran  ( 𝑥  ∈  ( 𝒫  𝑋  ∩  Fin )  ↦  ( Σ^ ‘ ( 𝐹  ↾  𝑥 ) ) ) ) ) | 
						
							| 52 | 51 | adantr | ⊢ ( ( 𝜑  ∧  +∞  ∈  ran  𝐹 )  →  ( ∃ 𝑦  ∈  𝑋 ( 𝐹 ‘ 𝑦 )  =  +∞  →  +∞  ∈  ran  ( 𝑥  ∈  ( 𝒫  𝑋  ∩  Fin )  ↦  ( Σ^ ‘ ( 𝐹  ↾  𝑥 ) ) ) ) ) | 
						
							| 53 | 26 52 | mpd | ⊢ ( ( 𝜑  ∧  +∞  ∈  ran  𝐹 )  →  +∞  ∈  ran  ( 𝑥  ∈  ( 𝒫  𝑋  ∩  Fin )  ↦  ( Σ^ ‘ ( 𝐹  ↾  𝑥 ) ) ) ) | 
						
							| 54 |  | supxrpnf | ⊢ ( ( ran  ( 𝑥  ∈  ( 𝒫  𝑋  ∩  Fin )  ↦  ( Σ^ ‘ ( 𝐹  ↾  𝑥 ) ) )  ⊆  ℝ*  ∧  +∞  ∈  ran  ( 𝑥  ∈  ( 𝒫  𝑋  ∩  Fin )  ↦  ( Σ^ ‘ ( 𝐹  ↾  𝑥 ) ) ) )  →  sup ( ran  ( 𝑥  ∈  ( 𝒫  𝑋  ∩  Fin )  ↦  ( Σ^ ‘ ( 𝐹  ↾  𝑥 ) ) ) ,  ℝ* ,   <  )  =  +∞ ) | 
						
							| 55 | 21 53 54 | syl2anc | ⊢ ( ( 𝜑  ∧  +∞  ∈  ran  𝐹 )  →  sup ( ran  ( 𝑥  ∈  ( 𝒫  𝑋  ∩  Fin )  ↦  ( Σ^ ‘ ( 𝐹  ↾  𝑥 ) ) ) ,  ℝ* ,   <  )  =  +∞ ) | 
						
							| 56 | 3 7 55 | 3eqtr4d | ⊢ ( ( 𝜑  ∧  +∞  ∈  ran  𝐹 )  →  ( Σ^ ‘ 𝐹 )  =  sup ( ran  ( 𝑥  ∈  ( 𝒫  𝑋  ∩  Fin )  ↦  ( Σ^ ‘ ( 𝐹  ↾  𝑥 ) ) ) ,  ℝ* ,   <  ) ) | 
						
							| 57 | 1 | adantr | ⊢ ( ( 𝜑  ∧  ¬  +∞  ∈  ran  𝐹 )  →  𝑋  ∈  𝑉 ) | 
						
							| 58 | 2 | adantr | ⊢ ( ( 𝜑  ∧  ¬  +∞  ∈  ran  𝐹 )  →  𝐹 : 𝑋 ⟶ ( 0 [,] +∞ ) ) | 
						
							| 59 |  | simpr | ⊢ ( ( 𝜑  ∧  ¬  +∞  ∈  ran  𝐹 )  →  ¬  +∞  ∈  ran  𝐹 ) | 
						
							| 60 | 58 59 | fge0iccico | ⊢ ( ( 𝜑  ∧  ¬  +∞  ∈  ran  𝐹 )  →  𝐹 : 𝑋 ⟶ ( 0 [,) +∞ ) ) | 
						
							| 61 | 57 60 | sge0reval | ⊢ ( ( 𝜑  ∧  ¬  +∞  ∈  ran  𝐹 )  →  ( Σ^ ‘ 𝐹 )  =  sup ( ran  ( 𝑥  ∈  ( 𝒫  𝑋  ∩  Fin )  ↦  Σ 𝑦  ∈  𝑥 ( 𝐹 ‘ 𝑦 ) ) ,  ℝ* ,   <  ) ) | 
						
							| 62 |  | elinel2 | ⊢ ( 𝑥  ∈  ( 𝒫  𝑋  ∩  Fin )  →  𝑥  ∈  Fin ) | 
						
							| 63 | 62 | adantl | ⊢ ( ( ( 𝜑  ∧  ¬  +∞  ∈  ran  𝐹 )  ∧  𝑥  ∈  ( 𝒫  𝑋  ∩  Fin ) )  →  𝑥  ∈  Fin ) | 
						
							| 64 | 15 | adantlr | ⊢ ( ( ( 𝜑  ∧  ¬  +∞  ∈  ran  𝐹 )  ∧  𝑥  ∈  ( 𝒫  𝑋  ∩  Fin ) )  →  ( 𝐹  ↾  𝑥 ) : 𝑥 ⟶ ( 0 [,] +∞ ) ) | 
						
							| 65 |  | nelrnres | ⊢ ( ¬  +∞  ∈  ran  𝐹  →  ¬  +∞  ∈  ran  ( 𝐹  ↾  𝑥 ) ) | 
						
							| 66 | 65 | ad2antlr | ⊢ ( ( ( 𝜑  ∧  ¬  +∞  ∈  ran  𝐹 )  ∧  𝑥  ∈  ( 𝒫  𝑋  ∩  Fin ) )  →  ¬  +∞  ∈  ran  ( 𝐹  ↾  𝑥 ) ) | 
						
							| 67 | 64 66 | fge0iccico | ⊢ ( ( ( 𝜑  ∧  ¬  +∞  ∈  ran  𝐹 )  ∧  𝑥  ∈  ( 𝒫  𝑋  ∩  Fin ) )  →  ( 𝐹  ↾  𝑥 ) : 𝑥 ⟶ ( 0 [,) +∞ ) ) | 
						
							| 68 | 63 67 | sge0fsum | ⊢ ( ( ( 𝜑  ∧  ¬  +∞  ∈  ran  𝐹 )  ∧  𝑥  ∈  ( 𝒫  𝑋  ∩  Fin ) )  →  ( Σ^ ‘ ( 𝐹  ↾  𝑥 ) )  =  Σ 𝑦  ∈  𝑥 ( ( 𝐹  ↾  𝑥 ) ‘ 𝑦 ) ) | 
						
							| 69 |  | simpr | ⊢ ( ( 𝑥  ∈  ( 𝒫  𝑋  ∩  Fin )  ∧  𝑦  ∈  𝑥 )  →  𝑦  ∈  𝑥 ) | 
						
							| 70 |  | fvres | ⊢ ( 𝑦  ∈  𝑥  →  ( ( 𝐹  ↾  𝑥 ) ‘ 𝑦 )  =  ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 71 | 69 70 | syl | ⊢ ( ( 𝑥  ∈  ( 𝒫  𝑋  ∩  Fin )  ∧  𝑦  ∈  𝑥 )  →  ( ( 𝐹  ↾  𝑥 ) ‘ 𝑦 )  =  ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 72 | 71 | sumeq2dv | ⊢ ( 𝑥  ∈  ( 𝒫  𝑋  ∩  Fin )  →  Σ 𝑦  ∈  𝑥 ( ( 𝐹  ↾  𝑥 ) ‘ 𝑦 )  =  Σ 𝑦  ∈  𝑥 ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 73 | 72 | adantl | ⊢ ( ( ( 𝜑  ∧  ¬  +∞  ∈  ran  𝐹 )  ∧  𝑥  ∈  ( 𝒫  𝑋  ∩  Fin ) )  →  Σ 𝑦  ∈  𝑥 ( ( 𝐹  ↾  𝑥 ) ‘ 𝑦 )  =  Σ 𝑦  ∈  𝑥 ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 74 | 68 73 | eqtrd | ⊢ ( ( ( 𝜑  ∧  ¬  +∞  ∈  ran  𝐹 )  ∧  𝑥  ∈  ( 𝒫  𝑋  ∩  Fin ) )  →  ( Σ^ ‘ ( 𝐹  ↾  𝑥 ) )  =  Σ 𝑦  ∈  𝑥 ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 75 | 74 | mpteq2dva | ⊢ ( ( 𝜑  ∧  ¬  +∞  ∈  ran  𝐹 )  →  ( 𝑥  ∈  ( 𝒫  𝑋  ∩  Fin )  ↦  ( Σ^ ‘ ( 𝐹  ↾  𝑥 ) ) )  =  ( 𝑥  ∈  ( 𝒫  𝑋  ∩  Fin )  ↦  Σ 𝑦  ∈  𝑥 ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 76 | 75 | rneqd | ⊢ ( ( 𝜑  ∧  ¬  +∞  ∈  ran  𝐹 )  →  ran  ( 𝑥  ∈  ( 𝒫  𝑋  ∩  Fin )  ↦  ( Σ^ ‘ ( 𝐹  ↾  𝑥 ) ) )  =  ran  ( 𝑥  ∈  ( 𝒫  𝑋  ∩  Fin )  ↦  Σ 𝑦  ∈  𝑥 ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 77 | 76 | supeq1d | ⊢ ( ( 𝜑  ∧  ¬  +∞  ∈  ran  𝐹 )  →  sup ( ran  ( 𝑥  ∈  ( 𝒫  𝑋  ∩  Fin )  ↦  ( Σ^ ‘ ( 𝐹  ↾  𝑥 ) ) ) ,  ℝ* ,   <  )  =  sup ( ran  ( 𝑥  ∈  ( 𝒫  𝑋  ∩  Fin )  ↦  Σ 𝑦  ∈  𝑥 ( 𝐹 ‘ 𝑦 ) ) ,  ℝ* ,   <  ) ) | 
						
							| 78 | 61 77 | eqtr4d | ⊢ ( ( 𝜑  ∧  ¬  +∞  ∈  ran  𝐹 )  →  ( Σ^ ‘ 𝐹 )  =  sup ( ran  ( 𝑥  ∈  ( 𝒫  𝑋  ∩  Fin )  ↦  ( Σ^ ‘ ( 𝐹  ↾  𝑥 ) ) ) ,  ℝ* ,   <  ) ) | 
						
							| 79 | 56 78 | pm2.61dan | ⊢ ( 𝜑  →  ( Σ^ ‘ 𝐹 )  =  sup ( ran  ( 𝑥  ∈  ( 𝒫  𝑋  ∩  Fin )  ↦  ( Σ^ ‘ ( 𝐹  ↾  𝑥 ) ) ) ,  ℝ* ,   <  ) ) |