| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sge0sup.x |
|- ( ph -> X e. V ) |
| 2 |
|
sge0sup.f |
|- ( ph -> F : X --> ( 0 [,] +oo ) ) |
| 3 |
|
eqidd |
|- ( ( ph /\ +oo e. ran F ) -> +oo = +oo ) |
| 4 |
1
|
adantr |
|- ( ( ph /\ +oo e. ran F ) -> X e. V ) |
| 5 |
2
|
adantr |
|- ( ( ph /\ +oo e. ran F ) -> F : X --> ( 0 [,] +oo ) ) |
| 6 |
|
simpr |
|- ( ( ph /\ +oo e. ran F ) -> +oo e. ran F ) |
| 7 |
4 5 6
|
sge0pnfval |
|- ( ( ph /\ +oo e. ran F ) -> ( sum^ ` F ) = +oo ) |
| 8 |
|
vex |
|- x e. _V |
| 9 |
8
|
a1i |
|- ( ( ph /\ x e. ( ~P X i^i Fin ) ) -> x e. _V ) |
| 10 |
2
|
adantr |
|- ( ( ph /\ x e. ( ~P X i^i Fin ) ) -> F : X --> ( 0 [,] +oo ) ) |
| 11 |
|
elinel1 |
|- ( x e. ( ~P X i^i Fin ) -> x e. ~P X ) |
| 12 |
|
elpwi |
|- ( x e. ~P X -> x C_ X ) |
| 13 |
11 12
|
syl |
|- ( x e. ( ~P X i^i Fin ) -> x C_ X ) |
| 14 |
13
|
adantl |
|- ( ( ph /\ x e. ( ~P X i^i Fin ) ) -> x C_ X ) |
| 15 |
10 14
|
fssresd |
|- ( ( ph /\ x e. ( ~P X i^i Fin ) ) -> ( F |` x ) : x --> ( 0 [,] +oo ) ) |
| 16 |
9 15
|
sge0xrcl |
|- ( ( ph /\ x e. ( ~P X i^i Fin ) ) -> ( sum^ ` ( F |` x ) ) e. RR* ) |
| 17 |
16
|
adantlr |
|- ( ( ( ph /\ +oo e. ran F ) /\ x e. ( ~P X i^i Fin ) ) -> ( sum^ ` ( F |` x ) ) e. RR* ) |
| 18 |
17
|
ralrimiva |
|- ( ( ph /\ +oo e. ran F ) -> A. x e. ( ~P X i^i Fin ) ( sum^ ` ( F |` x ) ) e. RR* ) |
| 19 |
|
eqid |
|- ( x e. ( ~P X i^i Fin ) |-> ( sum^ ` ( F |` x ) ) ) = ( x e. ( ~P X i^i Fin ) |-> ( sum^ ` ( F |` x ) ) ) |
| 20 |
19
|
rnmptss |
|- ( A. x e. ( ~P X i^i Fin ) ( sum^ ` ( F |` x ) ) e. RR* -> ran ( x e. ( ~P X i^i Fin ) |-> ( sum^ ` ( F |` x ) ) ) C_ RR* ) |
| 21 |
18 20
|
syl |
|- ( ( ph /\ +oo e. ran F ) -> ran ( x e. ( ~P X i^i Fin ) |-> ( sum^ ` ( F |` x ) ) ) C_ RR* ) |
| 22 |
2
|
ffnd |
|- ( ph -> F Fn X ) |
| 23 |
|
fvelrnb |
|- ( F Fn X -> ( +oo e. ran F <-> E. y e. X ( F ` y ) = +oo ) ) |
| 24 |
22 23
|
syl |
|- ( ph -> ( +oo e. ran F <-> E. y e. X ( F ` y ) = +oo ) ) |
| 25 |
24
|
adantr |
|- ( ( ph /\ +oo e. ran F ) -> ( +oo e. ran F <-> E. y e. X ( F ` y ) = +oo ) ) |
| 26 |
6 25
|
mpbid |
|- ( ( ph /\ +oo e. ran F ) -> E. y e. X ( F ` y ) = +oo ) |
| 27 |
|
snelpwi |
|- ( y e. X -> { y } e. ~P X ) |
| 28 |
|
snfi |
|- { y } e. Fin |
| 29 |
28
|
a1i |
|- ( y e. X -> { y } e. Fin ) |
| 30 |
27 29
|
elind |
|- ( y e. X -> { y } e. ( ~P X i^i Fin ) ) |
| 31 |
30
|
3ad2ant2 |
|- ( ( ph /\ y e. X /\ ( F ` y ) = +oo ) -> { y } e. ( ~P X i^i Fin ) ) |
| 32 |
|
simp2 |
|- ( ( ph /\ y e. X /\ ( F ` y ) = +oo ) -> y e. X ) |
| 33 |
2
|
3ad2ant1 |
|- ( ( ph /\ y e. X /\ ( F ` y ) = +oo ) -> F : X --> ( 0 [,] +oo ) ) |
| 34 |
32
|
snssd |
|- ( ( ph /\ y e. X /\ ( F ` y ) = +oo ) -> { y } C_ X ) |
| 35 |
33 34
|
fssresd |
|- ( ( ph /\ y e. X /\ ( F ` y ) = +oo ) -> ( F |` { y } ) : { y } --> ( 0 [,] +oo ) ) |
| 36 |
32 35
|
sge0sn |
|- ( ( ph /\ y e. X /\ ( F ` y ) = +oo ) -> ( sum^ ` ( F |` { y } ) ) = ( ( F |` { y } ) ` y ) ) |
| 37 |
|
vsnid |
|- y e. { y } |
| 38 |
|
fvres |
|- ( y e. { y } -> ( ( F |` { y } ) ` y ) = ( F ` y ) ) |
| 39 |
37 38
|
ax-mp |
|- ( ( F |` { y } ) ` y ) = ( F ` y ) |
| 40 |
39
|
a1i |
|- ( ( ph /\ y e. X /\ ( F ` y ) = +oo ) -> ( ( F |` { y } ) ` y ) = ( F ` y ) ) |
| 41 |
|
simp3 |
|- ( ( ph /\ y e. X /\ ( F ` y ) = +oo ) -> ( F ` y ) = +oo ) |
| 42 |
36 40 41
|
3eqtrrd |
|- ( ( ph /\ y e. X /\ ( F ` y ) = +oo ) -> +oo = ( sum^ ` ( F |` { y } ) ) ) |
| 43 |
|
reseq2 |
|- ( x = { y } -> ( F |` x ) = ( F |` { y } ) ) |
| 44 |
43
|
fveq2d |
|- ( x = { y } -> ( sum^ ` ( F |` x ) ) = ( sum^ ` ( F |` { y } ) ) ) |
| 45 |
44
|
rspceeqv |
|- ( ( { y } e. ( ~P X i^i Fin ) /\ +oo = ( sum^ ` ( F |` { y } ) ) ) -> E. x e. ( ~P X i^i Fin ) +oo = ( sum^ ` ( F |` x ) ) ) |
| 46 |
31 42 45
|
syl2anc |
|- ( ( ph /\ y e. X /\ ( F ` y ) = +oo ) -> E. x e. ( ~P X i^i Fin ) +oo = ( sum^ ` ( F |` x ) ) ) |
| 47 |
|
pnfex |
|- +oo e. _V |
| 48 |
47
|
a1i |
|- ( ( ph /\ y e. X /\ ( F ` y ) = +oo ) -> +oo e. _V ) |
| 49 |
19 46 48
|
elrnmptd |
|- ( ( ph /\ y e. X /\ ( F ` y ) = +oo ) -> +oo e. ran ( x e. ( ~P X i^i Fin ) |-> ( sum^ ` ( F |` x ) ) ) ) |
| 50 |
49
|
3exp |
|- ( ph -> ( y e. X -> ( ( F ` y ) = +oo -> +oo e. ran ( x e. ( ~P X i^i Fin ) |-> ( sum^ ` ( F |` x ) ) ) ) ) ) |
| 51 |
50
|
rexlimdv |
|- ( ph -> ( E. y e. X ( F ` y ) = +oo -> +oo e. ran ( x e. ( ~P X i^i Fin ) |-> ( sum^ ` ( F |` x ) ) ) ) ) |
| 52 |
51
|
adantr |
|- ( ( ph /\ +oo e. ran F ) -> ( E. y e. X ( F ` y ) = +oo -> +oo e. ran ( x e. ( ~P X i^i Fin ) |-> ( sum^ ` ( F |` x ) ) ) ) ) |
| 53 |
26 52
|
mpd |
|- ( ( ph /\ +oo e. ran F ) -> +oo e. ran ( x e. ( ~P X i^i Fin ) |-> ( sum^ ` ( F |` x ) ) ) ) |
| 54 |
|
supxrpnf |
|- ( ( ran ( x e. ( ~P X i^i Fin ) |-> ( sum^ ` ( F |` x ) ) ) C_ RR* /\ +oo e. ran ( x e. ( ~P X i^i Fin ) |-> ( sum^ ` ( F |` x ) ) ) ) -> sup ( ran ( x e. ( ~P X i^i Fin ) |-> ( sum^ ` ( F |` x ) ) ) , RR* , < ) = +oo ) |
| 55 |
21 53 54
|
syl2anc |
|- ( ( ph /\ +oo e. ran F ) -> sup ( ran ( x e. ( ~P X i^i Fin ) |-> ( sum^ ` ( F |` x ) ) ) , RR* , < ) = +oo ) |
| 56 |
3 7 55
|
3eqtr4d |
|- ( ( ph /\ +oo e. ran F ) -> ( sum^ ` F ) = sup ( ran ( x e. ( ~P X i^i Fin ) |-> ( sum^ ` ( F |` x ) ) ) , RR* , < ) ) |
| 57 |
1
|
adantr |
|- ( ( ph /\ -. +oo e. ran F ) -> X e. V ) |
| 58 |
2
|
adantr |
|- ( ( ph /\ -. +oo e. ran F ) -> F : X --> ( 0 [,] +oo ) ) |
| 59 |
|
simpr |
|- ( ( ph /\ -. +oo e. ran F ) -> -. +oo e. ran F ) |
| 60 |
58 59
|
fge0iccico |
|- ( ( ph /\ -. +oo e. ran F ) -> F : X --> ( 0 [,) +oo ) ) |
| 61 |
57 60
|
sge0reval |
|- ( ( ph /\ -. +oo e. ran F ) -> ( sum^ ` F ) = sup ( ran ( x e. ( ~P X i^i Fin ) |-> sum_ y e. x ( F ` y ) ) , RR* , < ) ) |
| 62 |
|
elinel2 |
|- ( x e. ( ~P X i^i Fin ) -> x e. Fin ) |
| 63 |
62
|
adantl |
|- ( ( ( ph /\ -. +oo e. ran F ) /\ x e. ( ~P X i^i Fin ) ) -> x e. Fin ) |
| 64 |
15
|
adantlr |
|- ( ( ( ph /\ -. +oo e. ran F ) /\ x e. ( ~P X i^i Fin ) ) -> ( F |` x ) : x --> ( 0 [,] +oo ) ) |
| 65 |
|
nelrnres |
|- ( -. +oo e. ran F -> -. +oo e. ran ( F |` x ) ) |
| 66 |
65
|
ad2antlr |
|- ( ( ( ph /\ -. +oo e. ran F ) /\ x e. ( ~P X i^i Fin ) ) -> -. +oo e. ran ( F |` x ) ) |
| 67 |
64 66
|
fge0iccico |
|- ( ( ( ph /\ -. +oo e. ran F ) /\ x e. ( ~P X i^i Fin ) ) -> ( F |` x ) : x --> ( 0 [,) +oo ) ) |
| 68 |
63 67
|
sge0fsum |
|- ( ( ( ph /\ -. +oo e. ran F ) /\ x e. ( ~P X i^i Fin ) ) -> ( sum^ ` ( F |` x ) ) = sum_ y e. x ( ( F |` x ) ` y ) ) |
| 69 |
|
simpr |
|- ( ( x e. ( ~P X i^i Fin ) /\ y e. x ) -> y e. x ) |
| 70 |
|
fvres |
|- ( y e. x -> ( ( F |` x ) ` y ) = ( F ` y ) ) |
| 71 |
69 70
|
syl |
|- ( ( x e. ( ~P X i^i Fin ) /\ y e. x ) -> ( ( F |` x ) ` y ) = ( F ` y ) ) |
| 72 |
71
|
sumeq2dv |
|- ( x e. ( ~P X i^i Fin ) -> sum_ y e. x ( ( F |` x ) ` y ) = sum_ y e. x ( F ` y ) ) |
| 73 |
72
|
adantl |
|- ( ( ( ph /\ -. +oo e. ran F ) /\ x e. ( ~P X i^i Fin ) ) -> sum_ y e. x ( ( F |` x ) ` y ) = sum_ y e. x ( F ` y ) ) |
| 74 |
68 73
|
eqtrd |
|- ( ( ( ph /\ -. +oo e. ran F ) /\ x e. ( ~P X i^i Fin ) ) -> ( sum^ ` ( F |` x ) ) = sum_ y e. x ( F ` y ) ) |
| 75 |
74
|
mpteq2dva |
|- ( ( ph /\ -. +oo e. ran F ) -> ( x e. ( ~P X i^i Fin ) |-> ( sum^ ` ( F |` x ) ) ) = ( x e. ( ~P X i^i Fin ) |-> sum_ y e. x ( F ` y ) ) ) |
| 76 |
75
|
rneqd |
|- ( ( ph /\ -. +oo e. ran F ) -> ran ( x e. ( ~P X i^i Fin ) |-> ( sum^ ` ( F |` x ) ) ) = ran ( x e. ( ~P X i^i Fin ) |-> sum_ y e. x ( F ` y ) ) ) |
| 77 |
76
|
supeq1d |
|- ( ( ph /\ -. +oo e. ran F ) -> sup ( ran ( x e. ( ~P X i^i Fin ) |-> ( sum^ ` ( F |` x ) ) ) , RR* , < ) = sup ( ran ( x e. ( ~P X i^i Fin ) |-> sum_ y e. x ( F ` y ) ) , RR* , < ) ) |
| 78 |
61 77
|
eqtr4d |
|- ( ( ph /\ -. +oo e. ran F ) -> ( sum^ ` F ) = sup ( ran ( x e. ( ~P X i^i Fin ) |-> ( sum^ ` ( F |` x ) ) ) , RR* , < ) ) |
| 79 |
56 78
|
pm2.61dan |
|- ( ph -> ( sum^ ` F ) = sup ( ran ( x e. ( ~P X i^i Fin ) |-> ( sum^ ` ( F |` x ) ) ) , RR* , < ) ) |