| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sge0sup.x |  |-  ( ph -> X e. V ) | 
						
							| 2 |  | sge0sup.f |  |-  ( ph -> F : X --> ( 0 [,] +oo ) ) | 
						
							| 3 |  | eqidd |  |-  ( ( ph /\ +oo e. ran F ) -> +oo = +oo ) | 
						
							| 4 | 1 | adantr |  |-  ( ( ph /\ +oo e. ran F ) -> X e. V ) | 
						
							| 5 | 2 | adantr |  |-  ( ( ph /\ +oo e. ran F ) -> F : X --> ( 0 [,] +oo ) ) | 
						
							| 6 |  | simpr |  |-  ( ( ph /\ +oo e. ran F ) -> +oo e. ran F ) | 
						
							| 7 | 4 5 6 | sge0pnfval |  |-  ( ( ph /\ +oo e. ran F ) -> ( sum^ ` F ) = +oo ) | 
						
							| 8 |  | vex |  |-  x e. _V | 
						
							| 9 | 8 | a1i |  |-  ( ( ph /\ x e. ( ~P X i^i Fin ) ) -> x e. _V ) | 
						
							| 10 | 2 | adantr |  |-  ( ( ph /\ x e. ( ~P X i^i Fin ) ) -> F : X --> ( 0 [,] +oo ) ) | 
						
							| 11 |  | elinel1 |  |-  ( x e. ( ~P X i^i Fin ) -> x e. ~P X ) | 
						
							| 12 |  | elpwi |  |-  ( x e. ~P X -> x C_ X ) | 
						
							| 13 | 11 12 | syl |  |-  ( x e. ( ~P X i^i Fin ) -> x C_ X ) | 
						
							| 14 | 13 | adantl |  |-  ( ( ph /\ x e. ( ~P X i^i Fin ) ) -> x C_ X ) | 
						
							| 15 | 10 14 | fssresd |  |-  ( ( ph /\ x e. ( ~P X i^i Fin ) ) -> ( F |` x ) : x --> ( 0 [,] +oo ) ) | 
						
							| 16 | 9 15 | sge0xrcl |  |-  ( ( ph /\ x e. ( ~P X i^i Fin ) ) -> ( sum^ ` ( F |` x ) ) e. RR* ) | 
						
							| 17 | 16 | adantlr |  |-  ( ( ( ph /\ +oo e. ran F ) /\ x e. ( ~P X i^i Fin ) ) -> ( sum^ ` ( F |` x ) ) e. RR* ) | 
						
							| 18 | 17 | ralrimiva |  |-  ( ( ph /\ +oo e. ran F ) -> A. x e. ( ~P X i^i Fin ) ( sum^ ` ( F |` x ) ) e. RR* ) | 
						
							| 19 |  | eqid |  |-  ( x e. ( ~P X i^i Fin ) |-> ( sum^ ` ( F |` x ) ) ) = ( x e. ( ~P X i^i Fin ) |-> ( sum^ ` ( F |` x ) ) ) | 
						
							| 20 | 19 | rnmptss |  |-  ( A. x e. ( ~P X i^i Fin ) ( sum^ ` ( F |` x ) ) e. RR* -> ran ( x e. ( ~P X i^i Fin ) |-> ( sum^ ` ( F |` x ) ) ) C_ RR* ) | 
						
							| 21 | 18 20 | syl |  |-  ( ( ph /\ +oo e. ran F ) -> ran ( x e. ( ~P X i^i Fin ) |-> ( sum^ ` ( F |` x ) ) ) C_ RR* ) | 
						
							| 22 | 2 | ffnd |  |-  ( ph -> F Fn X ) | 
						
							| 23 |  | fvelrnb |  |-  ( F Fn X -> ( +oo e. ran F <-> E. y e. X ( F ` y ) = +oo ) ) | 
						
							| 24 | 22 23 | syl |  |-  ( ph -> ( +oo e. ran F <-> E. y e. X ( F ` y ) = +oo ) ) | 
						
							| 25 | 24 | adantr |  |-  ( ( ph /\ +oo e. ran F ) -> ( +oo e. ran F <-> E. y e. X ( F ` y ) = +oo ) ) | 
						
							| 26 | 6 25 | mpbid |  |-  ( ( ph /\ +oo e. ran F ) -> E. y e. X ( F ` y ) = +oo ) | 
						
							| 27 |  | snelpwi |  |-  ( y e. X -> { y } e. ~P X ) | 
						
							| 28 |  | snfi |  |-  { y } e. Fin | 
						
							| 29 | 28 | a1i |  |-  ( y e. X -> { y } e. Fin ) | 
						
							| 30 | 27 29 | elind |  |-  ( y e. X -> { y } e. ( ~P X i^i Fin ) ) | 
						
							| 31 | 30 | 3ad2ant2 |  |-  ( ( ph /\ y e. X /\ ( F ` y ) = +oo ) -> { y } e. ( ~P X i^i Fin ) ) | 
						
							| 32 |  | simp2 |  |-  ( ( ph /\ y e. X /\ ( F ` y ) = +oo ) -> y e. X ) | 
						
							| 33 | 2 | 3ad2ant1 |  |-  ( ( ph /\ y e. X /\ ( F ` y ) = +oo ) -> F : X --> ( 0 [,] +oo ) ) | 
						
							| 34 | 32 | snssd |  |-  ( ( ph /\ y e. X /\ ( F ` y ) = +oo ) -> { y } C_ X ) | 
						
							| 35 | 33 34 | fssresd |  |-  ( ( ph /\ y e. X /\ ( F ` y ) = +oo ) -> ( F |` { y } ) : { y } --> ( 0 [,] +oo ) ) | 
						
							| 36 | 32 35 | sge0sn |  |-  ( ( ph /\ y e. X /\ ( F ` y ) = +oo ) -> ( sum^ ` ( F |` { y } ) ) = ( ( F |` { y } ) ` y ) ) | 
						
							| 37 |  | vsnid |  |-  y e. { y } | 
						
							| 38 |  | fvres |  |-  ( y e. { y } -> ( ( F |` { y } ) ` y ) = ( F ` y ) ) | 
						
							| 39 | 37 38 | ax-mp |  |-  ( ( F |` { y } ) ` y ) = ( F ` y ) | 
						
							| 40 | 39 | a1i |  |-  ( ( ph /\ y e. X /\ ( F ` y ) = +oo ) -> ( ( F |` { y } ) ` y ) = ( F ` y ) ) | 
						
							| 41 |  | simp3 |  |-  ( ( ph /\ y e. X /\ ( F ` y ) = +oo ) -> ( F ` y ) = +oo ) | 
						
							| 42 | 36 40 41 | 3eqtrrd |  |-  ( ( ph /\ y e. X /\ ( F ` y ) = +oo ) -> +oo = ( sum^ ` ( F |` { y } ) ) ) | 
						
							| 43 |  | reseq2 |  |-  ( x = { y } -> ( F |` x ) = ( F |` { y } ) ) | 
						
							| 44 | 43 | fveq2d |  |-  ( x = { y } -> ( sum^ ` ( F |` x ) ) = ( sum^ ` ( F |` { y } ) ) ) | 
						
							| 45 | 44 | rspceeqv |  |-  ( ( { y } e. ( ~P X i^i Fin ) /\ +oo = ( sum^ ` ( F |` { y } ) ) ) -> E. x e. ( ~P X i^i Fin ) +oo = ( sum^ ` ( F |` x ) ) ) | 
						
							| 46 | 31 42 45 | syl2anc |  |-  ( ( ph /\ y e. X /\ ( F ` y ) = +oo ) -> E. x e. ( ~P X i^i Fin ) +oo = ( sum^ ` ( F |` x ) ) ) | 
						
							| 47 |  | pnfex |  |-  +oo e. _V | 
						
							| 48 | 47 | a1i |  |-  ( ( ph /\ y e. X /\ ( F ` y ) = +oo ) -> +oo e. _V ) | 
						
							| 49 | 19 46 48 | elrnmptd |  |-  ( ( ph /\ y e. X /\ ( F ` y ) = +oo ) -> +oo e. ran ( x e. ( ~P X i^i Fin ) |-> ( sum^ ` ( F |` x ) ) ) ) | 
						
							| 50 | 49 | 3exp |  |-  ( ph -> ( y e. X -> ( ( F ` y ) = +oo -> +oo e. ran ( x e. ( ~P X i^i Fin ) |-> ( sum^ ` ( F |` x ) ) ) ) ) ) | 
						
							| 51 | 50 | rexlimdv |  |-  ( ph -> ( E. y e. X ( F ` y ) = +oo -> +oo e. ran ( x e. ( ~P X i^i Fin ) |-> ( sum^ ` ( F |` x ) ) ) ) ) | 
						
							| 52 | 51 | adantr |  |-  ( ( ph /\ +oo e. ran F ) -> ( E. y e. X ( F ` y ) = +oo -> +oo e. ran ( x e. ( ~P X i^i Fin ) |-> ( sum^ ` ( F |` x ) ) ) ) ) | 
						
							| 53 | 26 52 | mpd |  |-  ( ( ph /\ +oo e. ran F ) -> +oo e. ran ( x e. ( ~P X i^i Fin ) |-> ( sum^ ` ( F |` x ) ) ) ) | 
						
							| 54 |  | supxrpnf |  |-  ( ( ran ( x e. ( ~P X i^i Fin ) |-> ( sum^ ` ( F |` x ) ) ) C_ RR* /\ +oo e. ran ( x e. ( ~P X i^i Fin ) |-> ( sum^ ` ( F |` x ) ) ) ) -> sup ( ran ( x e. ( ~P X i^i Fin ) |-> ( sum^ ` ( F |` x ) ) ) , RR* , < ) = +oo ) | 
						
							| 55 | 21 53 54 | syl2anc |  |-  ( ( ph /\ +oo e. ran F ) -> sup ( ran ( x e. ( ~P X i^i Fin ) |-> ( sum^ ` ( F |` x ) ) ) , RR* , < ) = +oo ) | 
						
							| 56 | 3 7 55 | 3eqtr4d |  |-  ( ( ph /\ +oo e. ran F ) -> ( sum^ ` F ) = sup ( ran ( x e. ( ~P X i^i Fin ) |-> ( sum^ ` ( F |` x ) ) ) , RR* , < ) ) | 
						
							| 57 | 1 | adantr |  |-  ( ( ph /\ -. +oo e. ran F ) -> X e. V ) | 
						
							| 58 | 2 | adantr |  |-  ( ( ph /\ -. +oo e. ran F ) -> F : X --> ( 0 [,] +oo ) ) | 
						
							| 59 |  | simpr |  |-  ( ( ph /\ -. +oo e. ran F ) -> -. +oo e. ran F ) | 
						
							| 60 | 58 59 | fge0iccico |  |-  ( ( ph /\ -. +oo e. ran F ) -> F : X --> ( 0 [,) +oo ) ) | 
						
							| 61 | 57 60 | sge0reval |  |-  ( ( ph /\ -. +oo e. ran F ) -> ( sum^ ` F ) = sup ( ran ( x e. ( ~P X i^i Fin ) |-> sum_ y e. x ( F ` y ) ) , RR* , < ) ) | 
						
							| 62 |  | elinel2 |  |-  ( x e. ( ~P X i^i Fin ) -> x e. Fin ) | 
						
							| 63 | 62 | adantl |  |-  ( ( ( ph /\ -. +oo e. ran F ) /\ x e. ( ~P X i^i Fin ) ) -> x e. Fin ) | 
						
							| 64 | 15 | adantlr |  |-  ( ( ( ph /\ -. +oo e. ran F ) /\ x e. ( ~P X i^i Fin ) ) -> ( F |` x ) : x --> ( 0 [,] +oo ) ) | 
						
							| 65 |  | nelrnres |  |-  ( -. +oo e. ran F -> -. +oo e. ran ( F |` x ) ) | 
						
							| 66 | 65 | ad2antlr |  |-  ( ( ( ph /\ -. +oo e. ran F ) /\ x e. ( ~P X i^i Fin ) ) -> -. +oo e. ran ( F |` x ) ) | 
						
							| 67 | 64 66 | fge0iccico |  |-  ( ( ( ph /\ -. +oo e. ran F ) /\ x e. ( ~P X i^i Fin ) ) -> ( F |` x ) : x --> ( 0 [,) +oo ) ) | 
						
							| 68 | 63 67 | sge0fsum |  |-  ( ( ( ph /\ -. +oo e. ran F ) /\ x e. ( ~P X i^i Fin ) ) -> ( sum^ ` ( F |` x ) ) = sum_ y e. x ( ( F |` x ) ` y ) ) | 
						
							| 69 |  | simpr |  |-  ( ( x e. ( ~P X i^i Fin ) /\ y e. x ) -> y e. x ) | 
						
							| 70 |  | fvres |  |-  ( y e. x -> ( ( F |` x ) ` y ) = ( F ` y ) ) | 
						
							| 71 | 69 70 | syl |  |-  ( ( x e. ( ~P X i^i Fin ) /\ y e. x ) -> ( ( F |` x ) ` y ) = ( F ` y ) ) | 
						
							| 72 | 71 | sumeq2dv |  |-  ( x e. ( ~P X i^i Fin ) -> sum_ y e. x ( ( F |` x ) ` y ) = sum_ y e. x ( F ` y ) ) | 
						
							| 73 | 72 | adantl |  |-  ( ( ( ph /\ -. +oo e. ran F ) /\ x e. ( ~P X i^i Fin ) ) -> sum_ y e. x ( ( F |` x ) ` y ) = sum_ y e. x ( F ` y ) ) | 
						
							| 74 | 68 73 | eqtrd |  |-  ( ( ( ph /\ -. +oo e. ran F ) /\ x e. ( ~P X i^i Fin ) ) -> ( sum^ ` ( F |` x ) ) = sum_ y e. x ( F ` y ) ) | 
						
							| 75 | 74 | mpteq2dva |  |-  ( ( ph /\ -. +oo e. ran F ) -> ( x e. ( ~P X i^i Fin ) |-> ( sum^ ` ( F |` x ) ) ) = ( x e. ( ~P X i^i Fin ) |-> sum_ y e. x ( F ` y ) ) ) | 
						
							| 76 | 75 | rneqd |  |-  ( ( ph /\ -. +oo e. ran F ) -> ran ( x e. ( ~P X i^i Fin ) |-> ( sum^ ` ( F |` x ) ) ) = ran ( x e. ( ~P X i^i Fin ) |-> sum_ y e. x ( F ` y ) ) ) | 
						
							| 77 | 76 | supeq1d |  |-  ( ( ph /\ -. +oo e. ran F ) -> sup ( ran ( x e. ( ~P X i^i Fin ) |-> ( sum^ ` ( F |` x ) ) ) , RR* , < ) = sup ( ran ( x e. ( ~P X i^i Fin ) |-> sum_ y e. x ( F ` y ) ) , RR* , < ) ) | 
						
							| 78 | 61 77 | eqtr4d |  |-  ( ( ph /\ -. +oo e. ran F ) -> ( sum^ ` F ) = sup ( ran ( x e. ( ~P X i^i Fin ) |-> ( sum^ ` ( F |` x ) ) ) , RR* , < ) ) | 
						
							| 79 | 56 78 | pm2.61dan |  |-  ( ph -> ( sum^ ` F ) = sup ( ran ( x e. ( ~P X i^i Fin ) |-> ( sum^ ` ( F |` x ) ) ) , RR* , < ) ) |