Step |
Hyp |
Ref |
Expression |
1 |
|
sge0less.1 |
|- ( ph -> X e. V ) |
2 |
|
sge0less.2 |
|- ( ph -> F : X --> ( 0 [,] +oo ) ) |
3 |
|
inex1g |
|- ( X e. V -> ( X i^i Y ) e. _V ) |
4 |
1 3
|
syl |
|- ( ph -> ( X i^i Y ) e. _V ) |
5 |
|
fresin |
|- ( F : X --> ( 0 [,] +oo ) -> ( F |` Y ) : ( X i^i Y ) --> ( 0 [,] +oo ) ) |
6 |
2 5
|
syl |
|- ( ph -> ( F |` Y ) : ( X i^i Y ) --> ( 0 [,] +oo ) ) |
7 |
4 6
|
sge0xrcl |
|- ( ph -> ( sum^ ` ( F |` Y ) ) e. RR* ) |
8 |
|
pnfge |
|- ( ( sum^ ` ( F |` Y ) ) e. RR* -> ( sum^ ` ( F |` Y ) ) <_ +oo ) |
9 |
7 8
|
syl |
|- ( ph -> ( sum^ ` ( F |` Y ) ) <_ +oo ) |
10 |
9
|
adantr |
|- ( ( ph /\ ( sum^ ` F ) = +oo ) -> ( sum^ ` ( F |` Y ) ) <_ +oo ) |
11 |
|
id |
|- ( ( sum^ ` F ) = +oo -> ( sum^ ` F ) = +oo ) |
12 |
11
|
eqcomd |
|- ( ( sum^ ` F ) = +oo -> +oo = ( sum^ ` F ) ) |
13 |
12
|
adantl |
|- ( ( ph /\ ( sum^ ` F ) = +oo ) -> +oo = ( sum^ ` F ) ) |
14 |
10 13
|
breqtrd |
|- ( ( ph /\ ( sum^ ` F ) = +oo ) -> ( sum^ ` ( F |` Y ) ) <_ ( sum^ ` F ) ) |
15 |
|
simpl |
|- ( ( ph /\ -. ( sum^ ` F ) = +oo ) -> ph ) |
16 |
|
simpr |
|- ( ( ph /\ -. ( sum^ ` F ) = +oo ) -> -. ( sum^ ` F ) = +oo ) |
17 |
15 1
|
syl |
|- ( ( ph /\ -. ( sum^ ` F ) = +oo ) -> X e. V ) |
18 |
15 2
|
syl |
|- ( ( ph /\ -. ( sum^ ` F ) = +oo ) -> F : X --> ( 0 [,] +oo ) ) |
19 |
17 18
|
sge0repnf |
|- ( ( ph /\ -. ( sum^ ` F ) = +oo ) -> ( ( sum^ ` F ) e. RR <-> -. ( sum^ ` F ) = +oo ) ) |
20 |
16 19
|
mpbird |
|- ( ( ph /\ -. ( sum^ ` F ) = +oo ) -> ( sum^ ` F ) e. RR ) |
21 |
|
elinel1 |
|- ( x e. ( ~P ( X i^i Y ) i^i Fin ) -> x e. ~P ( X i^i Y ) ) |
22 |
|
elpwi |
|- ( x e. ~P ( X i^i Y ) -> x C_ ( X i^i Y ) ) |
23 |
21 22
|
syl |
|- ( x e. ( ~P ( X i^i Y ) i^i Fin ) -> x C_ ( X i^i Y ) ) |
24 |
|
inss2 |
|- ( X i^i Y ) C_ Y |
25 |
24
|
a1i |
|- ( x e. ( ~P ( X i^i Y ) i^i Fin ) -> ( X i^i Y ) C_ Y ) |
26 |
23 25
|
sstrd |
|- ( x e. ( ~P ( X i^i Y ) i^i Fin ) -> x C_ Y ) |
27 |
26
|
adantr |
|- ( ( x e. ( ~P ( X i^i Y ) i^i Fin ) /\ y e. x ) -> x C_ Y ) |
28 |
|
simpr |
|- ( ( x e. ( ~P ( X i^i Y ) i^i Fin ) /\ y e. x ) -> y e. x ) |
29 |
27 28
|
sseldd |
|- ( ( x e. ( ~P ( X i^i Y ) i^i Fin ) /\ y e. x ) -> y e. Y ) |
30 |
|
fvres |
|- ( y e. Y -> ( ( F |` Y ) ` y ) = ( F ` y ) ) |
31 |
29 30
|
syl |
|- ( ( x e. ( ~P ( X i^i Y ) i^i Fin ) /\ y e. x ) -> ( ( F |` Y ) ` y ) = ( F ` y ) ) |
32 |
31
|
ralrimiva |
|- ( x e. ( ~P ( X i^i Y ) i^i Fin ) -> A. y e. x ( ( F |` Y ) ` y ) = ( F ` y ) ) |
33 |
32
|
sumeq2d |
|- ( x e. ( ~P ( X i^i Y ) i^i Fin ) -> sum_ y e. x ( ( F |` Y ) ` y ) = sum_ y e. x ( F ` y ) ) |
34 |
33
|
mpteq2ia |
|- ( x e. ( ~P ( X i^i Y ) i^i Fin ) |-> sum_ y e. x ( ( F |` Y ) ` y ) ) = ( x e. ( ~P ( X i^i Y ) i^i Fin ) |-> sum_ y e. x ( F ` y ) ) |
35 |
|
inss1 |
|- ( X i^i Y ) C_ X |
36 |
35
|
sspwi |
|- ~P ( X i^i Y ) C_ ~P X |
37 |
|
ssrin |
|- ( ~P ( X i^i Y ) C_ ~P X -> ( ~P ( X i^i Y ) i^i Fin ) C_ ( ~P X i^i Fin ) ) |
38 |
36 37
|
ax-mp |
|- ( ~P ( X i^i Y ) i^i Fin ) C_ ( ~P X i^i Fin ) |
39 |
|
mptss |
|- ( ( ~P ( X i^i Y ) i^i Fin ) C_ ( ~P X i^i Fin ) -> ( x e. ( ~P ( X i^i Y ) i^i Fin ) |-> sum_ y e. x ( F ` y ) ) C_ ( x e. ( ~P X i^i Fin ) |-> sum_ y e. x ( F ` y ) ) ) |
40 |
38 39
|
ax-mp |
|- ( x e. ( ~P ( X i^i Y ) i^i Fin ) |-> sum_ y e. x ( F ` y ) ) C_ ( x e. ( ~P X i^i Fin ) |-> sum_ y e. x ( F ` y ) ) |
41 |
34 40
|
eqsstri |
|- ( x e. ( ~P ( X i^i Y ) i^i Fin ) |-> sum_ y e. x ( ( F |` Y ) ` y ) ) C_ ( x e. ( ~P X i^i Fin ) |-> sum_ y e. x ( F ` y ) ) |
42 |
|
rnss |
|- ( ( x e. ( ~P ( X i^i Y ) i^i Fin ) |-> sum_ y e. x ( ( F |` Y ) ` y ) ) C_ ( x e. ( ~P X i^i Fin ) |-> sum_ y e. x ( F ` y ) ) -> ran ( x e. ( ~P ( X i^i Y ) i^i Fin ) |-> sum_ y e. x ( ( F |` Y ) ` y ) ) C_ ran ( x e. ( ~P X i^i Fin ) |-> sum_ y e. x ( F ` y ) ) ) |
43 |
41 42
|
ax-mp |
|- ran ( x e. ( ~P ( X i^i Y ) i^i Fin ) |-> sum_ y e. x ( ( F |` Y ) ` y ) ) C_ ran ( x e. ( ~P X i^i Fin ) |-> sum_ y e. x ( F ` y ) ) |
44 |
43
|
a1i |
|- ( ( ph /\ ( sum^ ` F ) e. RR ) -> ran ( x e. ( ~P ( X i^i Y ) i^i Fin ) |-> sum_ y e. x ( ( F |` Y ) ` y ) ) C_ ran ( x e. ( ~P X i^i Fin ) |-> sum_ y e. x ( F ` y ) ) ) |
45 |
2
|
adantr |
|- ( ( ph /\ ( sum^ ` F ) e. RR ) -> F : X --> ( 0 [,] +oo ) ) |
46 |
1
|
adantr |
|- ( ( ph /\ ( sum^ ` F ) e. RR ) -> X e. V ) |
47 |
|
simpr |
|- ( ( ph /\ ( sum^ ` F ) e. RR ) -> ( sum^ ` F ) e. RR ) |
48 |
46 45 47
|
sge0rern |
|- ( ( ph /\ ( sum^ ` F ) e. RR ) -> -. +oo e. ran F ) |
49 |
45 48
|
fge0iccico |
|- ( ( ph /\ ( sum^ ` F ) e. RR ) -> F : X --> ( 0 [,) +oo ) ) |
50 |
49
|
sge0rnre |
|- ( ( ph /\ ( sum^ ` F ) e. RR ) -> ran ( x e. ( ~P X i^i Fin ) |-> sum_ y e. x ( F ` y ) ) C_ RR ) |
51 |
|
ressxr |
|- RR C_ RR* |
52 |
50 51
|
sstrdi |
|- ( ( ph /\ ( sum^ ` F ) e. RR ) -> ran ( x e. ( ~P X i^i Fin ) |-> sum_ y e. x ( F ` y ) ) C_ RR* ) |
53 |
|
supxrss |
|- ( ( ran ( x e. ( ~P ( X i^i Y ) i^i Fin ) |-> sum_ y e. x ( ( F |` Y ) ` y ) ) C_ ran ( x e. ( ~P X i^i Fin ) |-> sum_ y e. x ( F ` y ) ) /\ ran ( x e. ( ~P X i^i Fin ) |-> sum_ y e. x ( F ` y ) ) C_ RR* ) -> sup ( ran ( x e. ( ~P ( X i^i Y ) i^i Fin ) |-> sum_ y e. x ( ( F |` Y ) ` y ) ) , RR* , < ) <_ sup ( ran ( x e. ( ~P X i^i Fin ) |-> sum_ y e. x ( F ` y ) ) , RR* , < ) ) |
54 |
44 52 53
|
syl2anc |
|- ( ( ph /\ ( sum^ ` F ) e. RR ) -> sup ( ran ( x e. ( ~P ( X i^i Y ) i^i Fin ) |-> sum_ y e. x ( ( F |` Y ) ` y ) ) , RR* , < ) <_ sup ( ran ( x e. ( ~P X i^i Fin ) |-> sum_ y e. x ( F ` y ) ) , RR* , < ) ) |
55 |
46 3
|
syl |
|- ( ( ph /\ ( sum^ ` F ) e. RR ) -> ( X i^i Y ) e. _V ) |
56 |
45 5
|
syl |
|- ( ( ph /\ ( sum^ ` F ) e. RR ) -> ( F |` Y ) : ( X i^i Y ) --> ( 0 [,] +oo ) ) |
57 |
|
nelrnres |
|- ( -. +oo e. ran F -> -. +oo e. ran ( F |` Y ) ) |
58 |
48 57
|
syl |
|- ( ( ph /\ ( sum^ ` F ) e. RR ) -> -. +oo e. ran ( F |` Y ) ) |
59 |
56 58
|
fge0iccico |
|- ( ( ph /\ ( sum^ ` F ) e. RR ) -> ( F |` Y ) : ( X i^i Y ) --> ( 0 [,) +oo ) ) |
60 |
55 59
|
sge0reval |
|- ( ( ph /\ ( sum^ ` F ) e. RR ) -> ( sum^ ` ( F |` Y ) ) = sup ( ran ( x e. ( ~P ( X i^i Y ) i^i Fin ) |-> sum_ y e. x ( ( F |` Y ) ` y ) ) , RR* , < ) ) |
61 |
46 49
|
sge0reval |
|- ( ( ph /\ ( sum^ ` F ) e. RR ) -> ( sum^ ` F ) = sup ( ran ( x e. ( ~P X i^i Fin ) |-> sum_ y e. x ( F ` y ) ) , RR* , < ) ) |
62 |
60 61
|
breq12d |
|- ( ( ph /\ ( sum^ ` F ) e. RR ) -> ( ( sum^ ` ( F |` Y ) ) <_ ( sum^ ` F ) <-> sup ( ran ( x e. ( ~P ( X i^i Y ) i^i Fin ) |-> sum_ y e. x ( ( F |` Y ) ` y ) ) , RR* , < ) <_ sup ( ran ( x e. ( ~P X i^i Fin ) |-> sum_ y e. x ( F ` y ) ) , RR* , < ) ) ) |
63 |
54 62
|
mpbird |
|- ( ( ph /\ ( sum^ ` F ) e. RR ) -> ( sum^ ` ( F |` Y ) ) <_ ( sum^ ` F ) ) |
64 |
15 20 63
|
syl2anc |
|- ( ( ph /\ -. ( sum^ ` F ) = +oo ) -> ( sum^ ` ( F |` Y ) ) <_ ( sum^ ` F ) ) |
65 |
14 64
|
pm2.61dan |
|- ( ph -> ( sum^ ` ( F |` Y ) ) <_ ( sum^ ` F ) ) |