Metamath Proof Explorer


Theorem sge0less

Description: A shorter sum of nonnegative extended reals is smaller than a longer one. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses sge0less.1 φXV
sge0less.2 φF:X0+∞
Assertion sge0less φsum^FYsum^F

Proof

Step Hyp Ref Expression
1 sge0less.1 φXV
2 sge0less.2 φF:X0+∞
3 inex1g XVXYV
4 1 3 syl φXYV
5 fresin F:X0+∞FY:XY0+∞
6 2 5 syl φFY:XY0+∞
7 4 6 sge0xrcl φsum^FY*
8 pnfge sum^FY*sum^FY+∞
9 7 8 syl φsum^FY+∞
10 9 adantr φsum^F=+∞sum^FY+∞
11 id sum^F=+∞sum^F=+∞
12 11 eqcomd sum^F=+∞+∞=sum^F
13 12 adantl φsum^F=+∞+∞=sum^F
14 10 13 breqtrd φsum^F=+∞sum^FYsum^F
15 simpl φ¬sum^F=+∞φ
16 simpr φ¬sum^F=+∞¬sum^F=+∞
17 15 1 syl φ¬sum^F=+∞XV
18 15 2 syl φ¬sum^F=+∞F:X0+∞
19 17 18 sge0repnf φ¬sum^F=+∞sum^F¬sum^F=+∞
20 16 19 mpbird φ¬sum^F=+∞sum^F
21 elinel1 x𝒫XYFinx𝒫XY
22 elpwi x𝒫XYxXY
23 21 22 syl x𝒫XYFinxXY
24 inss2 XYY
25 24 a1i x𝒫XYFinXYY
26 23 25 sstrd x𝒫XYFinxY
27 26 adantr x𝒫XYFinyxxY
28 simpr x𝒫XYFinyxyx
29 27 28 sseldd x𝒫XYFinyxyY
30 fvres yYFYy=Fy
31 29 30 syl x𝒫XYFinyxFYy=Fy
32 31 ralrimiva x𝒫XYFinyxFYy=Fy
33 32 sumeq2d x𝒫XYFinyxFYy=yxFy
34 33 mpteq2ia x𝒫XYFinyxFYy=x𝒫XYFinyxFy
35 inss1 XYX
36 35 sspwi 𝒫XY𝒫X
37 ssrin 𝒫XY𝒫X𝒫XYFin𝒫XFin
38 36 37 ax-mp 𝒫XYFin𝒫XFin
39 mptss 𝒫XYFin𝒫XFinx𝒫XYFinyxFyx𝒫XFinyxFy
40 38 39 ax-mp x𝒫XYFinyxFyx𝒫XFinyxFy
41 34 40 eqsstri x𝒫XYFinyxFYyx𝒫XFinyxFy
42 rnss x𝒫XYFinyxFYyx𝒫XFinyxFyranx𝒫XYFinyxFYyranx𝒫XFinyxFy
43 41 42 ax-mp ranx𝒫XYFinyxFYyranx𝒫XFinyxFy
44 43 a1i φsum^Franx𝒫XYFinyxFYyranx𝒫XFinyxFy
45 2 adantr φsum^FF:X0+∞
46 1 adantr φsum^FXV
47 simpr φsum^Fsum^F
48 46 45 47 sge0rern φsum^F¬+∞ranF
49 45 48 fge0iccico φsum^FF:X0+∞
50 49 sge0rnre φsum^Franx𝒫XFinyxFy
51 ressxr *
52 50 51 sstrdi φsum^Franx𝒫XFinyxFy*
53 supxrss ranx𝒫XYFinyxFYyranx𝒫XFinyxFyranx𝒫XFinyxFy*supranx𝒫XYFinyxFYy*<supranx𝒫XFinyxFy*<
54 44 52 53 syl2anc φsum^Fsupranx𝒫XYFinyxFYy*<supranx𝒫XFinyxFy*<
55 46 3 syl φsum^FXYV
56 45 5 syl φsum^FFY:XY0+∞
57 nelrnres ¬+∞ranF¬+∞ranFY
58 48 57 syl φsum^F¬+∞ranFY
59 56 58 fge0iccico φsum^FFY:XY0+∞
60 55 59 sge0reval φsum^Fsum^FY=supranx𝒫XYFinyxFYy*<
61 46 49 sge0reval φsum^Fsum^F=supranx𝒫XFinyxFy*<
62 60 61 breq12d φsum^Fsum^FYsum^Fsupranx𝒫XYFinyxFYy*<supranx𝒫XFinyxFy*<
63 54 62 mpbird φsum^Fsum^FYsum^F
64 15 20 63 syl2anc φ¬sum^F=+∞sum^FYsum^F
65 14 64 pm2.61dan φsum^FYsum^F