Step |
Hyp |
Ref |
Expression |
1 |
|
sge0less.1 |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
2 |
|
sge0less.2 |
⊢ ( 𝜑 → 𝐹 : 𝑋 ⟶ ( 0 [,] +∞ ) ) |
3 |
|
inex1g |
⊢ ( 𝑋 ∈ 𝑉 → ( 𝑋 ∩ 𝑌 ) ∈ V ) |
4 |
1 3
|
syl |
⊢ ( 𝜑 → ( 𝑋 ∩ 𝑌 ) ∈ V ) |
5 |
|
fresin |
⊢ ( 𝐹 : 𝑋 ⟶ ( 0 [,] +∞ ) → ( 𝐹 ↾ 𝑌 ) : ( 𝑋 ∩ 𝑌 ) ⟶ ( 0 [,] +∞ ) ) |
6 |
2 5
|
syl |
⊢ ( 𝜑 → ( 𝐹 ↾ 𝑌 ) : ( 𝑋 ∩ 𝑌 ) ⟶ ( 0 [,] +∞ ) ) |
7 |
4 6
|
sge0xrcl |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝐹 ↾ 𝑌 ) ) ∈ ℝ* ) |
8 |
|
pnfge |
⊢ ( ( Σ^ ‘ ( 𝐹 ↾ 𝑌 ) ) ∈ ℝ* → ( Σ^ ‘ ( 𝐹 ↾ 𝑌 ) ) ≤ +∞ ) |
9 |
7 8
|
syl |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝐹 ↾ 𝑌 ) ) ≤ +∞ ) |
10 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ ( Σ^ ‘ 𝐹 ) = +∞ ) → ( Σ^ ‘ ( 𝐹 ↾ 𝑌 ) ) ≤ +∞ ) |
11 |
|
id |
⊢ ( ( Σ^ ‘ 𝐹 ) = +∞ → ( Σ^ ‘ 𝐹 ) = +∞ ) |
12 |
11
|
eqcomd |
⊢ ( ( Σ^ ‘ 𝐹 ) = +∞ → +∞ = ( Σ^ ‘ 𝐹 ) ) |
13 |
12
|
adantl |
⊢ ( ( 𝜑 ∧ ( Σ^ ‘ 𝐹 ) = +∞ ) → +∞ = ( Σ^ ‘ 𝐹 ) ) |
14 |
10 13
|
breqtrd |
⊢ ( ( 𝜑 ∧ ( Σ^ ‘ 𝐹 ) = +∞ ) → ( Σ^ ‘ ( 𝐹 ↾ 𝑌 ) ) ≤ ( Σ^ ‘ 𝐹 ) ) |
15 |
|
simpl |
⊢ ( ( 𝜑 ∧ ¬ ( Σ^ ‘ 𝐹 ) = +∞ ) → 𝜑 ) |
16 |
|
simpr |
⊢ ( ( 𝜑 ∧ ¬ ( Σ^ ‘ 𝐹 ) = +∞ ) → ¬ ( Σ^ ‘ 𝐹 ) = +∞ ) |
17 |
15 1
|
syl |
⊢ ( ( 𝜑 ∧ ¬ ( Σ^ ‘ 𝐹 ) = +∞ ) → 𝑋 ∈ 𝑉 ) |
18 |
15 2
|
syl |
⊢ ( ( 𝜑 ∧ ¬ ( Σ^ ‘ 𝐹 ) = +∞ ) → 𝐹 : 𝑋 ⟶ ( 0 [,] +∞ ) ) |
19 |
17 18
|
sge0repnf |
⊢ ( ( 𝜑 ∧ ¬ ( Σ^ ‘ 𝐹 ) = +∞ ) → ( ( Σ^ ‘ 𝐹 ) ∈ ℝ ↔ ¬ ( Σ^ ‘ 𝐹 ) = +∞ ) ) |
20 |
16 19
|
mpbird |
⊢ ( ( 𝜑 ∧ ¬ ( Σ^ ‘ 𝐹 ) = +∞ ) → ( Σ^ ‘ 𝐹 ) ∈ ℝ ) |
21 |
|
elinel1 |
⊢ ( 𝑥 ∈ ( 𝒫 ( 𝑋 ∩ 𝑌 ) ∩ Fin ) → 𝑥 ∈ 𝒫 ( 𝑋 ∩ 𝑌 ) ) |
22 |
|
elpwi |
⊢ ( 𝑥 ∈ 𝒫 ( 𝑋 ∩ 𝑌 ) → 𝑥 ⊆ ( 𝑋 ∩ 𝑌 ) ) |
23 |
21 22
|
syl |
⊢ ( 𝑥 ∈ ( 𝒫 ( 𝑋 ∩ 𝑌 ) ∩ Fin ) → 𝑥 ⊆ ( 𝑋 ∩ 𝑌 ) ) |
24 |
|
inss2 |
⊢ ( 𝑋 ∩ 𝑌 ) ⊆ 𝑌 |
25 |
24
|
a1i |
⊢ ( 𝑥 ∈ ( 𝒫 ( 𝑋 ∩ 𝑌 ) ∩ Fin ) → ( 𝑋 ∩ 𝑌 ) ⊆ 𝑌 ) |
26 |
23 25
|
sstrd |
⊢ ( 𝑥 ∈ ( 𝒫 ( 𝑋 ∩ 𝑌 ) ∩ Fin ) → 𝑥 ⊆ 𝑌 ) |
27 |
26
|
adantr |
⊢ ( ( 𝑥 ∈ ( 𝒫 ( 𝑋 ∩ 𝑌 ) ∩ Fin ) ∧ 𝑦 ∈ 𝑥 ) → 𝑥 ⊆ 𝑌 ) |
28 |
|
simpr |
⊢ ( ( 𝑥 ∈ ( 𝒫 ( 𝑋 ∩ 𝑌 ) ∩ Fin ) ∧ 𝑦 ∈ 𝑥 ) → 𝑦 ∈ 𝑥 ) |
29 |
27 28
|
sseldd |
⊢ ( ( 𝑥 ∈ ( 𝒫 ( 𝑋 ∩ 𝑌 ) ∩ Fin ) ∧ 𝑦 ∈ 𝑥 ) → 𝑦 ∈ 𝑌 ) |
30 |
|
fvres |
⊢ ( 𝑦 ∈ 𝑌 → ( ( 𝐹 ↾ 𝑌 ) ‘ 𝑦 ) = ( 𝐹 ‘ 𝑦 ) ) |
31 |
29 30
|
syl |
⊢ ( ( 𝑥 ∈ ( 𝒫 ( 𝑋 ∩ 𝑌 ) ∩ Fin ) ∧ 𝑦 ∈ 𝑥 ) → ( ( 𝐹 ↾ 𝑌 ) ‘ 𝑦 ) = ( 𝐹 ‘ 𝑦 ) ) |
32 |
31
|
ralrimiva |
⊢ ( 𝑥 ∈ ( 𝒫 ( 𝑋 ∩ 𝑌 ) ∩ Fin ) → ∀ 𝑦 ∈ 𝑥 ( ( 𝐹 ↾ 𝑌 ) ‘ 𝑦 ) = ( 𝐹 ‘ 𝑦 ) ) |
33 |
32
|
sumeq2d |
⊢ ( 𝑥 ∈ ( 𝒫 ( 𝑋 ∩ 𝑌 ) ∩ Fin ) → Σ 𝑦 ∈ 𝑥 ( ( 𝐹 ↾ 𝑌 ) ‘ 𝑦 ) = Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ) |
34 |
33
|
mpteq2ia |
⊢ ( 𝑥 ∈ ( 𝒫 ( 𝑋 ∩ 𝑌 ) ∩ Fin ) ↦ Σ 𝑦 ∈ 𝑥 ( ( 𝐹 ↾ 𝑌 ) ‘ 𝑦 ) ) = ( 𝑥 ∈ ( 𝒫 ( 𝑋 ∩ 𝑌 ) ∩ Fin ) ↦ Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ) |
35 |
|
inss1 |
⊢ ( 𝑋 ∩ 𝑌 ) ⊆ 𝑋 |
36 |
35
|
sspwi |
⊢ 𝒫 ( 𝑋 ∩ 𝑌 ) ⊆ 𝒫 𝑋 |
37 |
|
ssrin |
⊢ ( 𝒫 ( 𝑋 ∩ 𝑌 ) ⊆ 𝒫 𝑋 → ( 𝒫 ( 𝑋 ∩ 𝑌 ) ∩ Fin ) ⊆ ( 𝒫 𝑋 ∩ Fin ) ) |
38 |
36 37
|
ax-mp |
⊢ ( 𝒫 ( 𝑋 ∩ 𝑌 ) ∩ Fin ) ⊆ ( 𝒫 𝑋 ∩ Fin ) |
39 |
|
mptss |
⊢ ( ( 𝒫 ( 𝑋 ∩ 𝑌 ) ∩ Fin ) ⊆ ( 𝒫 𝑋 ∩ Fin ) → ( 𝑥 ∈ ( 𝒫 ( 𝑋 ∩ 𝑌 ) ∩ Fin ) ↦ Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ) ⊆ ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ) ) |
40 |
38 39
|
ax-mp |
⊢ ( 𝑥 ∈ ( 𝒫 ( 𝑋 ∩ 𝑌 ) ∩ Fin ) ↦ Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ) ⊆ ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ) |
41 |
34 40
|
eqsstri |
⊢ ( 𝑥 ∈ ( 𝒫 ( 𝑋 ∩ 𝑌 ) ∩ Fin ) ↦ Σ 𝑦 ∈ 𝑥 ( ( 𝐹 ↾ 𝑌 ) ‘ 𝑦 ) ) ⊆ ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ) |
42 |
|
rnss |
⊢ ( ( 𝑥 ∈ ( 𝒫 ( 𝑋 ∩ 𝑌 ) ∩ Fin ) ↦ Σ 𝑦 ∈ 𝑥 ( ( 𝐹 ↾ 𝑌 ) ‘ 𝑦 ) ) ⊆ ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ) → ran ( 𝑥 ∈ ( 𝒫 ( 𝑋 ∩ 𝑌 ) ∩ Fin ) ↦ Σ 𝑦 ∈ 𝑥 ( ( 𝐹 ↾ 𝑌 ) ‘ 𝑦 ) ) ⊆ ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ) ) |
43 |
41 42
|
ax-mp |
⊢ ran ( 𝑥 ∈ ( 𝒫 ( 𝑋 ∩ 𝑌 ) ∩ Fin ) ↦ Σ 𝑦 ∈ 𝑥 ( ( 𝐹 ↾ 𝑌 ) ‘ 𝑦 ) ) ⊆ ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ) |
44 |
43
|
a1i |
⊢ ( ( 𝜑 ∧ ( Σ^ ‘ 𝐹 ) ∈ ℝ ) → ran ( 𝑥 ∈ ( 𝒫 ( 𝑋 ∩ 𝑌 ) ∩ Fin ) ↦ Σ 𝑦 ∈ 𝑥 ( ( 𝐹 ↾ 𝑌 ) ‘ 𝑦 ) ) ⊆ ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ) ) |
45 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( Σ^ ‘ 𝐹 ) ∈ ℝ ) → 𝐹 : 𝑋 ⟶ ( 0 [,] +∞ ) ) |
46 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ( Σ^ ‘ 𝐹 ) ∈ ℝ ) → 𝑋 ∈ 𝑉 ) |
47 |
|
simpr |
⊢ ( ( 𝜑 ∧ ( Σ^ ‘ 𝐹 ) ∈ ℝ ) → ( Σ^ ‘ 𝐹 ) ∈ ℝ ) |
48 |
46 45 47
|
sge0rern |
⊢ ( ( 𝜑 ∧ ( Σ^ ‘ 𝐹 ) ∈ ℝ ) → ¬ +∞ ∈ ran 𝐹 ) |
49 |
45 48
|
fge0iccico |
⊢ ( ( 𝜑 ∧ ( Σ^ ‘ 𝐹 ) ∈ ℝ ) → 𝐹 : 𝑋 ⟶ ( 0 [,) +∞ ) ) |
50 |
49
|
sge0rnre |
⊢ ( ( 𝜑 ∧ ( Σ^ ‘ 𝐹 ) ∈ ℝ ) → ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ) ⊆ ℝ ) |
51 |
|
ressxr |
⊢ ℝ ⊆ ℝ* |
52 |
50 51
|
sstrdi |
⊢ ( ( 𝜑 ∧ ( Σ^ ‘ 𝐹 ) ∈ ℝ ) → ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ) ⊆ ℝ* ) |
53 |
|
supxrss |
⊢ ( ( ran ( 𝑥 ∈ ( 𝒫 ( 𝑋 ∩ 𝑌 ) ∩ Fin ) ↦ Σ 𝑦 ∈ 𝑥 ( ( 𝐹 ↾ 𝑌 ) ‘ 𝑦 ) ) ⊆ ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ) ∧ ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ) ⊆ ℝ* ) → sup ( ran ( 𝑥 ∈ ( 𝒫 ( 𝑋 ∩ 𝑌 ) ∩ Fin ) ↦ Σ 𝑦 ∈ 𝑥 ( ( 𝐹 ↾ 𝑌 ) ‘ 𝑦 ) ) , ℝ* , < ) ≤ sup ( ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ) , ℝ* , < ) ) |
54 |
44 52 53
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( Σ^ ‘ 𝐹 ) ∈ ℝ ) → sup ( ran ( 𝑥 ∈ ( 𝒫 ( 𝑋 ∩ 𝑌 ) ∩ Fin ) ↦ Σ 𝑦 ∈ 𝑥 ( ( 𝐹 ↾ 𝑌 ) ‘ 𝑦 ) ) , ℝ* , < ) ≤ sup ( ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ) , ℝ* , < ) ) |
55 |
46 3
|
syl |
⊢ ( ( 𝜑 ∧ ( Σ^ ‘ 𝐹 ) ∈ ℝ ) → ( 𝑋 ∩ 𝑌 ) ∈ V ) |
56 |
45 5
|
syl |
⊢ ( ( 𝜑 ∧ ( Σ^ ‘ 𝐹 ) ∈ ℝ ) → ( 𝐹 ↾ 𝑌 ) : ( 𝑋 ∩ 𝑌 ) ⟶ ( 0 [,] +∞ ) ) |
57 |
|
nelrnres |
⊢ ( ¬ +∞ ∈ ran 𝐹 → ¬ +∞ ∈ ran ( 𝐹 ↾ 𝑌 ) ) |
58 |
48 57
|
syl |
⊢ ( ( 𝜑 ∧ ( Σ^ ‘ 𝐹 ) ∈ ℝ ) → ¬ +∞ ∈ ran ( 𝐹 ↾ 𝑌 ) ) |
59 |
56 58
|
fge0iccico |
⊢ ( ( 𝜑 ∧ ( Σ^ ‘ 𝐹 ) ∈ ℝ ) → ( 𝐹 ↾ 𝑌 ) : ( 𝑋 ∩ 𝑌 ) ⟶ ( 0 [,) +∞ ) ) |
60 |
55 59
|
sge0reval |
⊢ ( ( 𝜑 ∧ ( Σ^ ‘ 𝐹 ) ∈ ℝ ) → ( Σ^ ‘ ( 𝐹 ↾ 𝑌 ) ) = sup ( ran ( 𝑥 ∈ ( 𝒫 ( 𝑋 ∩ 𝑌 ) ∩ Fin ) ↦ Σ 𝑦 ∈ 𝑥 ( ( 𝐹 ↾ 𝑌 ) ‘ 𝑦 ) ) , ℝ* , < ) ) |
61 |
46 49
|
sge0reval |
⊢ ( ( 𝜑 ∧ ( Σ^ ‘ 𝐹 ) ∈ ℝ ) → ( Σ^ ‘ 𝐹 ) = sup ( ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ) , ℝ* , < ) ) |
62 |
60 61
|
breq12d |
⊢ ( ( 𝜑 ∧ ( Σ^ ‘ 𝐹 ) ∈ ℝ ) → ( ( Σ^ ‘ ( 𝐹 ↾ 𝑌 ) ) ≤ ( Σ^ ‘ 𝐹 ) ↔ sup ( ran ( 𝑥 ∈ ( 𝒫 ( 𝑋 ∩ 𝑌 ) ∩ Fin ) ↦ Σ 𝑦 ∈ 𝑥 ( ( 𝐹 ↾ 𝑌 ) ‘ 𝑦 ) ) , ℝ* , < ) ≤ sup ( ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ) , ℝ* , < ) ) ) |
63 |
54 62
|
mpbird |
⊢ ( ( 𝜑 ∧ ( Σ^ ‘ 𝐹 ) ∈ ℝ ) → ( Σ^ ‘ ( 𝐹 ↾ 𝑌 ) ) ≤ ( Σ^ ‘ 𝐹 ) ) |
64 |
15 20 63
|
syl2anc |
⊢ ( ( 𝜑 ∧ ¬ ( Σ^ ‘ 𝐹 ) = +∞ ) → ( Σ^ ‘ ( 𝐹 ↾ 𝑌 ) ) ≤ ( Σ^ ‘ 𝐹 ) ) |
65 |
14 64
|
pm2.61dan |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝐹 ↾ 𝑌 ) ) ≤ ( Σ^ ‘ 𝐹 ) ) |