| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simplr |
⊢ ( ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℝ* ) ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ⊆ ℝ* ) |
| 2 |
|
simpl |
⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℝ* ) → 𝐴 ⊆ 𝐵 ) |
| 3 |
2
|
sselda |
⊢ ( ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℝ* ) ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ 𝐵 ) |
| 4 |
|
supxrub |
⊢ ( ( 𝐵 ⊆ ℝ* ∧ 𝑥 ∈ 𝐵 ) → 𝑥 ≤ sup ( 𝐵 , ℝ* , < ) ) |
| 5 |
1 3 4
|
syl2anc |
⊢ ( ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℝ* ) ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ≤ sup ( 𝐵 , ℝ* , < ) ) |
| 6 |
5
|
ralrimiva |
⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℝ* ) → ∀ 𝑥 ∈ 𝐴 𝑥 ≤ sup ( 𝐵 , ℝ* , < ) ) |
| 7 |
|
sstr |
⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℝ* ) → 𝐴 ⊆ ℝ* ) |
| 8 |
|
supxrcl |
⊢ ( 𝐵 ⊆ ℝ* → sup ( 𝐵 , ℝ* , < ) ∈ ℝ* ) |
| 9 |
8
|
adantl |
⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℝ* ) → sup ( 𝐵 , ℝ* , < ) ∈ ℝ* ) |
| 10 |
|
supxrleub |
⊢ ( ( 𝐴 ⊆ ℝ* ∧ sup ( 𝐵 , ℝ* , < ) ∈ ℝ* ) → ( sup ( 𝐴 , ℝ* , < ) ≤ sup ( 𝐵 , ℝ* , < ) ↔ ∀ 𝑥 ∈ 𝐴 𝑥 ≤ sup ( 𝐵 , ℝ* , < ) ) ) |
| 11 |
7 9 10
|
syl2anc |
⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℝ* ) → ( sup ( 𝐴 , ℝ* , < ) ≤ sup ( 𝐵 , ℝ* , < ) ↔ ∀ 𝑥 ∈ 𝐴 𝑥 ≤ sup ( 𝐵 , ℝ* , < ) ) ) |
| 12 |
6 11
|
mpbird |
⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℝ* ) → sup ( 𝐴 , ℝ* , < ) ≤ sup ( 𝐵 , ℝ* , < ) ) |