Step |
Hyp |
Ref |
Expression |
1 |
|
sge0rnbnd.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
2 |
|
sge0rnbnd.f |
⊢ ( 𝜑 → 𝐹 : 𝑋 ⟶ ( 0 [,] +∞ ) ) |
3 |
|
sge0rnbnd.re |
⊢ ( 𝜑 → ( Σ^ ‘ 𝐹 ) ∈ ℝ ) |
4 |
|
simpl |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ) ) → 𝜑 ) |
5 |
|
vex |
⊢ 𝑤 ∈ V |
6 |
|
eqid |
⊢ ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ) = ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ) |
7 |
6
|
elrnmpt |
⊢ ( 𝑤 ∈ V → ( 𝑤 ∈ ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ) ↔ ∃ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) 𝑤 = Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ) ) |
8 |
5 7
|
ax-mp |
⊢ ( 𝑤 ∈ ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ) ↔ ∃ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) 𝑤 = Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ) |
9 |
8
|
biimpi |
⊢ ( 𝑤 ∈ ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ) → ∃ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) 𝑤 = Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ) |
10 |
9
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ) ) → ∃ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) 𝑤 = Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ) |
11 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ∧ 𝑤 = Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ) → 𝑤 = Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ) |
12 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) → 𝑋 ∈ 𝑉 ) |
13 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) → 𝐹 : 𝑋 ⟶ ( 0 [,] +∞ ) ) |
14 |
1 2 3
|
sge0rern |
⊢ ( 𝜑 → ¬ +∞ ∈ ran 𝐹 ) |
15 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) → ¬ +∞ ∈ ran 𝐹 ) |
16 |
13 15
|
fge0iccico |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) → 𝐹 : 𝑋 ⟶ ( 0 [,) +∞ ) ) |
17 |
|
elpwinss |
⊢ ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) → 𝑥 ⊆ 𝑋 ) |
18 |
17
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) → 𝑥 ⊆ 𝑋 ) |
19 |
|
elinel2 |
⊢ ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) → 𝑥 ∈ Fin ) |
20 |
19
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) → 𝑥 ∈ Fin ) |
21 |
12 16 18 20
|
fsumlesge0 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) → Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ≤ ( Σ^ ‘ 𝐹 ) ) |
22 |
21
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ∧ 𝑤 = Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ) → Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ≤ ( Σ^ ‘ 𝐹 ) ) |
23 |
11 22
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ∧ 𝑤 = Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ) → 𝑤 ≤ ( Σ^ ‘ 𝐹 ) ) |
24 |
23
|
3exp |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) → ( 𝑤 = Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) → 𝑤 ≤ ( Σ^ ‘ 𝐹 ) ) ) ) |
25 |
24
|
rexlimdv |
⊢ ( 𝜑 → ( ∃ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) 𝑤 = Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) → 𝑤 ≤ ( Σ^ ‘ 𝐹 ) ) ) |
26 |
4 10 25
|
sylc |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ) ) → 𝑤 ≤ ( Σ^ ‘ 𝐹 ) ) |
27 |
26
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑤 ∈ ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ) 𝑤 ≤ ( Σ^ ‘ 𝐹 ) ) |
28 |
|
brralrspcev |
⊢ ( ( ( Σ^ ‘ 𝐹 ) ∈ ℝ ∧ ∀ 𝑤 ∈ ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ) 𝑤 ≤ ( Σ^ ‘ 𝐹 ) ) → ∃ 𝑧 ∈ ℝ ∀ 𝑤 ∈ ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ) 𝑤 ≤ 𝑧 ) |
29 |
3 27 28
|
syl2anc |
⊢ ( 𝜑 → ∃ 𝑧 ∈ ℝ ∀ 𝑤 ∈ ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ) 𝑤 ≤ 𝑧 ) |