| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sge0rnbnd.x | ⊢ ( 𝜑  →  𝑋  ∈  𝑉 ) | 
						
							| 2 |  | sge0rnbnd.f | ⊢ ( 𝜑  →  𝐹 : 𝑋 ⟶ ( 0 [,] +∞ ) ) | 
						
							| 3 |  | sge0rnbnd.re | ⊢ ( 𝜑  →  ( Σ^ ‘ 𝐹 )  ∈  ℝ ) | 
						
							| 4 |  | simpl | ⊢ ( ( 𝜑  ∧  𝑤  ∈  ran  ( 𝑥  ∈  ( 𝒫  𝑋  ∩  Fin )  ↦  Σ 𝑦  ∈  𝑥 ( 𝐹 ‘ 𝑦 ) ) )  →  𝜑 ) | 
						
							| 5 |  | vex | ⊢ 𝑤  ∈  V | 
						
							| 6 |  | eqid | ⊢ ( 𝑥  ∈  ( 𝒫  𝑋  ∩  Fin )  ↦  Σ 𝑦  ∈  𝑥 ( 𝐹 ‘ 𝑦 ) )  =  ( 𝑥  ∈  ( 𝒫  𝑋  ∩  Fin )  ↦  Σ 𝑦  ∈  𝑥 ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 7 | 6 | elrnmpt | ⊢ ( 𝑤  ∈  V  →  ( 𝑤  ∈  ran  ( 𝑥  ∈  ( 𝒫  𝑋  ∩  Fin )  ↦  Σ 𝑦  ∈  𝑥 ( 𝐹 ‘ 𝑦 ) )  ↔  ∃ 𝑥  ∈  ( 𝒫  𝑋  ∩  Fin ) 𝑤  =  Σ 𝑦  ∈  𝑥 ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 8 | 5 7 | ax-mp | ⊢ ( 𝑤  ∈  ran  ( 𝑥  ∈  ( 𝒫  𝑋  ∩  Fin )  ↦  Σ 𝑦  ∈  𝑥 ( 𝐹 ‘ 𝑦 ) )  ↔  ∃ 𝑥  ∈  ( 𝒫  𝑋  ∩  Fin ) 𝑤  =  Σ 𝑦  ∈  𝑥 ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 9 | 8 | biimpi | ⊢ ( 𝑤  ∈  ran  ( 𝑥  ∈  ( 𝒫  𝑋  ∩  Fin )  ↦  Σ 𝑦  ∈  𝑥 ( 𝐹 ‘ 𝑦 ) )  →  ∃ 𝑥  ∈  ( 𝒫  𝑋  ∩  Fin ) 𝑤  =  Σ 𝑦  ∈  𝑥 ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 10 | 9 | adantl | ⊢ ( ( 𝜑  ∧  𝑤  ∈  ran  ( 𝑥  ∈  ( 𝒫  𝑋  ∩  Fin )  ↦  Σ 𝑦  ∈  𝑥 ( 𝐹 ‘ 𝑦 ) ) )  →  ∃ 𝑥  ∈  ( 𝒫  𝑋  ∩  Fin ) 𝑤  =  Σ 𝑦  ∈  𝑥 ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 11 |  | simp3 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝒫  𝑋  ∩  Fin )  ∧  𝑤  =  Σ 𝑦  ∈  𝑥 ( 𝐹 ‘ 𝑦 ) )  →  𝑤  =  Σ 𝑦  ∈  𝑥 ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 12 | 1 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝒫  𝑋  ∩  Fin ) )  →  𝑋  ∈  𝑉 ) | 
						
							| 13 | 2 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝒫  𝑋  ∩  Fin ) )  →  𝐹 : 𝑋 ⟶ ( 0 [,] +∞ ) ) | 
						
							| 14 | 1 2 3 | sge0rern | ⊢ ( 𝜑  →  ¬  +∞  ∈  ran  𝐹 ) | 
						
							| 15 | 14 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝒫  𝑋  ∩  Fin ) )  →  ¬  +∞  ∈  ran  𝐹 ) | 
						
							| 16 | 13 15 | fge0iccico | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝒫  𝑋  ∩  Fin ) )  →  𝐹 : 𝑋 ⟶ ( 0 [,) +∞ ) ) | 
						
							| 17 |  | elpwinss | ⊢ ( 𝑥  ∈  ( 𝒫  𝑋  ∩  Fin )  →  𝑥  ⊆  𝑋 ) | 
						
							| 18 | 17 | adantl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝒫  𝑋  ∩  Fin ) )  →  𝑥  ⊆  𝑋 ) | 
						
							| 19 |  | elinel2 | ⊢ ( 𝑥  ∈  ( 𝒫  𝑋  ∩  Fin )  →  𝑥  ∈  Fin ) | 
						
							| 20 | 19 | adantl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝒫  𝑋  ∩  Fin ) )  →  𝑥  ∈  Fin ) | 
						
							| 21 | 12 16 18 20 | fsumlesge0 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝒫  𝑋  ∩  Fin ) )  →  Σ 𝑦  ∈  𝑥 ( 𝐹 ‘ 𝑦 )  ≤  ( Σ^ ‘ 𝐹 ) ) | 
						
							| 22 | 21 | 3adant3 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝒫  𝑋  ∩  Fin )  ∧  𝑤  =  Σ 𝑦  ∈  𝑥 ( 𝐹 ‘ 𝑦 ) )  →  Σ 𝑦  ∈  𝑥 ( 𝐹 ‘ 𝑦 )  ≤  ( Σ^ ‘ 𝐹 ) ) | 
						
							| 23 | 11 22 | eqbrtrd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝒫  𝑋  ∩  Fin )  ∧  𝑤  =  Σ 𝑦  ∈  𝑥 ( 𝐹 ‘ 𝑦 ) )  →  𝑤  ≤  ( Σ^ ‘ 𝐹 ) ) | 
						
							| 24 | 23 | 3exp | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( 𝒫  𝑋  ∩  Fin )  →  ( 𝑤  =  Σ 𝑦  ∈  𝑥 ( 𝐹 ‘ 𝑦 )  →  𝑤  ≤  ( Σ^ ‘ 𝐹 ) ) ) ) | 
						
							| 25 | 24 | rexlimdv | ⊢ ( 𝜑  →  ( ∃ 𝑥  ∈  ( 𝒫  𝑋  ∩  Fin ) 𝑤  =  Σ 𝑦  ∈  𝑥 ( 𝐹 ‘ 𝑦 )  →  𝑤  ≤  ( Σ^ ‘ 𝐹 ) ) ) | 
						
							| 26 | 4 10 25 | sylc | ⊢ ( ( 𝜑  ∧  𝑤  ∈  ran  ( 𝑥  ∈  ( 𝒫  𝑋  ∩  Fin )  ↦  Σ 𝑦  ∈  𝑥 ( 𝐹 ‘ 𝑦 ) ) )  →  𝑤  ≤  ( Σ^ ‘ 𝐹 ) ) | 
						
							| 27 | 26 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑤  ∈  ran  ( 𝑥  ∈  ( 𝒫  𝑋  ∩  Fin )  ↦  Σ 𝑦  ∈  𝑥 ( 𝐹 ‘ 𝑦 ) ) 𝑤  ≤  ( Σ^ ‘ 𝐹 ) ) | 
						
							| 28 |  | brralrspcev | ⊢ ( ( ( Σ^ ‘ 𝐹 )  ∈  ℝ  ∧  ∀ 𝑤  ∈  ran  ( 𝑥  ∈  ( 𝒫  𝑋  ∩  Fin )  ↦  Σ 𝑦  ∈  𝑥 ( 𝐹 ‘ 𝑦 ) ) 𝑤  ≤  ( Σ^ ‘ 𝐹 ) )  →  ∃ 𝑧  ∈  ℝ ∀ 𝑤  ∈  ran  ( 𝑥  ∈  ( 𝒫  𝑋  ∩  Fin )  ↦  Σ 𝑦  ∈  𝑥 ( 𝐹 ‘ 𝑦 ) ) 𝑤  ≤  𝑧 ) | 
						
							| 29 | 3 27 28 | syl2anc | ⊢ ( 𝜑  →  ∃ 𝑧  ∈  ℝ ∀ 𝑤  ∈  ran  ( 𝑥  ∈  ( 𝒫  𝑋  ∩  Fin )  ↦  Σ 𝑦  ∈  𝑥 ( 𝐹 ‘ 𝑦 ) ) 𝑤  ≤  𝑧 ) |